Fuglede conjecture and tilings in the field of *p*-adic numbers

Lingmin LIAO (Université Paris-Est Créteil)

(joint with Ai-Hua Fan, Shi-Lei Fan and Ruxi Shi)

Transversal Aspects of Tilings Oléron, France

May 31th 2016

- 2 Fuglede's conjecture on \mathbb{Q}_p
- 3 Fuglede's conjecture for compact open set in \mathbb{Q}_p
- 4 Proof of Fuglede's conjecture on \mathbb{Q}_p

(4) (E) (b)

э

Introduction

Lingmin LIAO University Paris-East Créteil Fuglede conjecture and tilings in the field of p-adic numbers 3/30

医下子 医

э

I. Fuglede's conjecture in \mathbb{R}^d

- $\Omega \subset \mathbb{R}^d$ be a Lebesgue measurable of finite non-zero Lebesgue measure.
- Ω is said to be spectral if there exists a set $\Lambda \subset \mathbb{R}^d$ such that $\{\frac{1}{Leb(\Omega)^{1/2}}e^{2\pi ix\cdot\xi}\}_{\xi\in\Lambda}$ form a Hilbert basis of $L^2(\Omega)$.
- We say that the set Ω tiles \mathbb{R}^d by translation, if there exists a set $T \subset \mathbb{R}^d$ such that $\{\Omega + t : t \in T\}$ forms a partition a.e. of \mathbb{R}^d , equivalently,

$$\sum_{t \in T} 1_{\Omega}(x-t) = 1, \qquad Leb - a.e..$$

Fuglede's conjecture

 Ω is a spectral set if and only if it tiles \mathbb{R}^d .

• Fuglede 1974 : true if either Λ or T is a lattice.

II. Results in \mathbb{R}^d

The conjecture is not true for $d \ge 3$ (both direction). It is still open for d = 1, 2.

- Tao 2004 : "spectral \Rightarrow tiling" is false for $d \ge 5$.
- Matolsci 2005 : "spectral \Rightarrow tiling" is false for d = 4
- Matolsci and Kolountzakis 2006 : "spectral \Rightarrow tiling" is false for d=3
- Matolsci and Kolountzakis 2006 : "tiling \Rightarrow spectral" is false for $d \geq 5$
- Farkas and Gy 2006 : "tiling \Rightarrow spectral" is false for d = 4
- Farkas, Matolsci and Móra 2006 : "tiling \Rightarrow spectral" is false for d=3
- losevich, Katz and Tao 2003 : true for convex planer sets.
- Laba 2001 : true for union of two intervals.
- Lagarias, Wang 1996, 1997 : all tilings of $\mathbb R$ must be periodic.

III. General setting

- G is a local compact abelian group with Haar measure \mathfrak{m} . For $x \in G$, $\Omega + x := \{y + x \in G : y \in \Omega\}$.
- A character of G is a group homomorphism χ : G → S¹, i.e. χ(g₁ + g₂) = χ(g₁)χ(g₂) and χ(0) = 1. Denote by G the dual group which consists of all the characters of G.
- A subset Ω ⊂ G of finite Haar Measure is said to be spectral if there exists a set Λ ⊂ Ĝ which form a Hilbert basis of L²(Ω). The set Λ is called a spectrum of Ω and (Ω, Λ) is called a spectral pair.
- We say that the set Ω tiles G by translation, if there exists a set $T \subset G$ such that $\{\Omega + t : t \in T\}$ forms a partition a.e. of G, equivalently,

$$\sum_{t \in T} 1_{\Omega}(x-t) = 1, \quad a.e. \ x \in G.$$

The set T is called a translate of Ω and (Ω,T) is called a tiling pair.

IV. Spectral set conjecture

Question : Ω is a spectral set if and only if it tiles *G*?

- The case $G = \mathbb{Z}$ is open. The case $G = \mathbb{Z}/p^n\mathbb{Z}$ is true.
- The case $G = \mathbb{R}^d$ is the famous Fuglede conjecture.
- How about the case $G = \mathbb{Q}_p^d$? We confirm the conjecture when d = 1.

Fuglede's conjecture on \mathbb{Q}_p

Lingmin LIAO University Paris-East Créteil Fuglede conjecture and tilings in the field of p-adic numbers 8/30

э

I. The *p*-adic numbers and the topology

• Ring \mathbb{Z}_p of *p*-adic integers :

$$\mathbb{Z}_p \ni x = \sum_{i=0}^{\infty} a_i p^i$$

• Field \mathbb{Q}_p of *p*-adic numbers : fraction field of \mathbb{Z}_p :

$$\mathbb{Q}_p \ni x = \sum_{i=v(x)}^{\infty} a_i p^i, \quad (\exists v(x) \in \mathbb{Z}).$$

Absolute value : $|x|_p = p^{-v(x)}$, metric : $d(x, y) = |x - y|_p$.

Remark : \mathbb{Z}_p is the unit ball of \mathbb{Q}_p . The topology on \mathbb{Q}_p is the same as the topology of symbolic space.

II. Arithmetic in \mathbb{Q}_p

Addition and multiplication : similar to the decimal way. "Carrying" from left to right.

Example :
$$x=(p-1)+(p-1)\times p+(p-1)\times p^2+\cdots$$
 , then
 $\bullet \ x+1=0.$ So,

$$-1 = (p-1) + (p-1) \times p + (p-1) \times p^2 + \cdots$$

•
$$2x = (p-2) + (p-1) \times p + (p-1) \times p^2 + \cdots$$
.
Ve also have substraction and division.

III. Haar measure and characters on \mathbb{Q}_p

The Haar measure \mathfrak{m} on \mathbb{Q}_p is such that the unit ball \mathbb{Z}_p has measure 1.

• A character $\chi \in \widehat{\mathbb{Q}_p}$ (where $\{x\} = \sum_{n=v_p(x)}^{-1} a_n p^n$) :

$$\chi(x) = e^{2\pi i \{x\}}.$$

Notice : χ is a local constant function ($\chi(x) = 1$, if $x \in \mathbb{Z}_p$).

• For any $y \in \mathbb{Q}_p$, we define

$$\chi_y(x) = \chi(yx).$$

The map $y \mapsto \chi_y$ from \mathbb{Q}_p onto $\widehat{\mathbb{Q}_p}$ is an isomorphism

IV. Fourier transformation on \mathbb{Q}_p For $f \in L^1(\mathbb{Q}_p)$, the Fourier transform of f is defined to be

$$\widehat{f}(y) = \int_{\mathbb{Q}_p} f(x) \overline{\chi_y(x)} dx, \quad (dx = d\mathfrak{m}).$$

Examples :

•
$$\widehat{\mathbf{1}_{B(0,p^{\gamma})}}(\xi) = p^{\gamma} \mathbf{1}_{B(0,p^{-\gamma})}(\xi)$$

• Let $\Omega = \bigsqcup_{j=1} B(c_j, p^{\gamma})$. Then $\widehat{\mathbf{1}_{\Omega}}(\xi) = p^{\gamma} \mathbf{1}_{B(0,p^{-\gamma})}(\xi) \sum_{j} \chi(-c_j \xi)$.

Lemma (A criterion of spectral set)

A Borel set Ω of finite Haar measure is a spectral set with Λ as a spectrum iff

$$\forall \xi \in \widehat{\mathbb{Q}_p}, \sum_{\lambda \in \Lambda} |\widehat{1_{\Omega}}(\lambda - \xi)|^2 = \mathfrak{m}(\Omega)^2.$$

V. Tree structure of \mathbb{Q}_p

- Vertices \mathcal{T} : balls in \mathbb{Q}_p .
- Edges \mathcal{E} : pairs $(B', B) \in \mathcal{T} \times \mathcal{T}$ such that $B' \subset B$, $\mathfrak{m}(B) = p\mathfrak{m}(B')$, (denoted by $B' \prec B$).

VI. Bounded open sets in \mathbb{Q}_p

Any bounded open set O of \mathbb{Q}_p can be described by a subtree $(\mathcal{T}_O, \mathcal{E}_O)$ of $(\mathcal{T}, \mathcal{E})$.

• Let B^* be the smallest ball containing O, which will be the root of the tree. For any given ball B contained in O, there is a unique sequence of balls B_0, B_1, \dots, B_r such that

$$B = B_0 \prec B_1 \prec B_2 \prec \cdots \prec B_r = B^*.$$

- The set of vertices \mathcal{T}_O is composed of all such balls B_0, B_1, \cdots, B_r for all possible balls B contained in O.
- The set of edges \mathcal{E}_O is composed of all edges $B_i \prec B_{i+1}$ as above.

VII. Comapact open set in \mathbb{Q}_p

Any compact open set can be described by a finite tree, because a compact open set is a disjoint finite union of balls of same size. In this case, as in the above construction of subtree we only consider these balls of same size as B.

FIGURE : $\Omega = 3\mathbb{Z}_3 \sqcup (2 + 3\mathbb{Z}_3) \sqcup (4 + 27\mathbb{Z}_3) \sqcup (22 + 27\mathbb{Z}_3).$

VIII. *p*-homogenous subsets in \mathbb{Q}_p

- A subtree (*T'*, *E'*) is said to be homogeneous if the number of descendants of *B* ∈ *T'* depends only on |*B*|. If this number is either 1 or *p*, we call (*T'*, *E'*) a *p*-homogeneous tree.
- An bounded open set is said to be homogeneous (resp. *p*-homogeneous) if the corresponding tree is homogeneous (resp. *p*-homogeneous).
- A bounded open *p*-homogenous set must be compact.

VIII. *p*-homogenous subsets in \mathbb{Q}_p

FIGURE : A 2-homogenous tree

VIII. *p*-homogenous subsets in \mathbb{Q}_p

FIGURE : A 3-homogeneous tree

IX. Fuglede's conjecture on \mathbb{Q}_p

Theorem (A. Fan, S. Fan, L, R. Shi, arXiv :1512.08904)

A Borel set $\Omega \in \mathbb{Q}_p$ is a spectral set if and only if it tiles \mathbb{Q}_p . Moreover, Ω is an almost compact open set, and the corresponding compact open set is *p*-homogenous.

A set Ω ⊂ Q_p is called an almost compact open set, if ∃ compact open Ω' ⊂ Q_p such that m(Ω \ Ω') = m(Ω' \ Ω) = 0.

Fuglede's conjecture for compact open set in \mathbb{Q}_p

I. Tree structure of $\mathbb{Z}/p^{\gamma}\mathbb{Z}$

We identify $\mathbb{Z}/p^{\gamma}\mathbb{Z} = \{0, 1, \cdots, p^{\gamma} - 1\}$ with $\{0, 1, 2, \cdots p - 1\}^{\gamma}$ which is considered as a finite tree, denoted by $\mathcal{T}^{(\gamma)}$.

- Vertices $\mathcal{T}^{(\gamma)}$: consists of the disjoint union of the sets $\mathbb{Z}/p^n\mathbb{Z}, 0 \leq n \leq \gamma$. Each vertex, except the root of the tree, is identified with a sequence $t_0t_1\cdots t_n$ with $0\leq n\leq \gamma$ and $t_i\in\{0,1,\cdots,p-1\}$.
- Edges : consists of pairs $(x, y) \in \mathbb{Z}/p^n\mathbb{Z} \times \mathbb{Z}/p^{n+1}\mathbb{Z}$ with $x \equiv y \mod p^n$, where $0 \le n \le \gamma 1$.

For example, each point t of $\mathbb{Z}/p^{\gamma}\mathbb{Z}$ is identified with $t_0t_1\cdots t_{\gamma-1}$, which is a boundary point of the tree.

I. Tree structure of $\mathbb{Z}/p^{\gamma}\mathbb{Z}$

FIGURE : The set $\mathbb{Z}/3^4\mathbb{Z} = \{0, 1, 2, \cdots, 80\}$ is considered as a tree $\mathcal{T}^{(4)}$.

II. *p*-homogenous subsets $\mathbb{Z}/p^{\gamma}\mathbb{Z}$

Each subset $C \subset \mathbb{Z}/p^{\gamma}\mathbb{Z}$ will determine a subtree of $\mathcal{T}^{(\gamma)}$, denoted by \mathcal{T}_{C} , which consists of the paths from the root to the points in C. For each $0 \leq n \leq \gamma$, denote $C_{\text{mod }p^{n}} := \{x \in \mathbb{Z}/p^{n}\mathbb{Z} : \exists \ y \in C, \text{ such that } x = y \mod p^{n}\}.$

- Vertices \mathcal{T}_C : consists of the disjoint union of the sets $C_{\text{mod } p^n}, 0 \leq n \leq \gamma.$
- Edges : consists of pairs $(x, y) \in C_{\text{mod } p^n} \times C_{\text{mod } p^{n+1}}$ with $x \equiv y \mod p^n$, where $0 \le n \le \gamma 1$.

The set C is called a p-homogenous subsets of $\mathbb{Z}/p^{\gamma}\mathbb{Z}$ iff the corresponding tree \mathcal{T}_C is p-homogenous.

II. *p*-homogenous subsets $\mathbb{Z}/p^{\gamma}\mathbb{Z}$

FIGURE : For $p=3, \gamma=3,$ the tree p-homogeneous tree determined by $\{0,4,8,9,13,17,18,22,26\}.$

III. Spectral sets and tiles in $\mathbb{Z}/p^{\gamma}\mathbb{Z}$

Recall that the Fourier transform of a function f defined on $\mathbb{Z}/p^{\gamma}\mathbb{Z}$ is defined as

$$\widehat{f}(k) = \sum_{x \in \mathbb{Z}/p^{\gamma}\mathbb{Z}} f(x) e^{-\frac{2\pi i k x}{p^{\gamma}}}, (\forall k \in \mathbb{Z}/p^{\gamma}\mathbb{Z}).$$

Theorem (Fan–Fan–Shi, arXiv 2015) Let $C \subset \mathbb{Z}/p^{\gamma}\mathbb{Z}$. The following statements are equivalent.

- (1) C is p-homogenous.
- (2) There exists a subset $I \subset \{0, \dots, \gamma\}$ such that $\sharp I = \log_p(\sharp C)$ and $\widehat{1_C}(p^{\ell}) = 0$ for $\ell \in I$.
- (3) C is a spectral set in $\mathbb{Z}/p^{\gamma}\mathbb{Z}$, with

$$\Lambda = \left\{ \sum_{i \in I} a_i p^{-i-1} : a_i \in I \right\}.$$

(4) C tiles $\mathbb{Z}/p^{\gamma}\mathbb{Z}$, by

$$T = \left\{ \sum_{j \in J} a_j p^j : a_j \in \{0, \cdots p - 1\} \right\}, \quad \text{where } J := \{0, \cdots, \gamma\} \setminus I.$$

III. Spectral sets and tiles in $\mathbb{Z}/p^{\gamma}\mathbb{Z}$

FIGURE : Here, $p = 3, \gamma = 3$, $I = \{1, 3\}, J = \{0, 2\}$.

IV. Compact open spectral sets \mathbb{Q}_p

W. I. o. g, we assume that Ω is of the form

$$\Omega = \bigsqcup_{c \in C} (c + p^{\gamma} \mathbb{Z}_p),$$

where $\gamma \ge 1$ is an integer and $C \subset \{0, 1, \cdots, p^{\gamma} - 1\}$. Theorem (Fan–Fan–Shi, arXiv 2015) The following are equivalent.

- (1) \mathcal{T}_C is a *p*-homogenous tree.
- (2) Ω is *p*-homogenous.
- (3) Ω tiles \mathbb{Q}_p .
- (4) Ω is a spectral set in \mathbb{Q}_p .

Proof of Fuglede's conjecture on \mathbb{Q}_p

Lingmin LIAO University Paris-East Créteil Fuglede conjecture and tilings in the field of p-adic numbers 22/30

I. Fourier transformation

A complex function f defined on \mathbb{Q}_p is called *uniformly locally constant* if there exists $n \in \mathbb{Z}$ such that

$$f(x+u) = f(x) \quad \forall x \in \mathbb{Q}_p, \forall u \in B(0, p^n).$$

Lemma

Let $f \in L^1(\mathbb{Q}_p)$ be a complex-value integrable function. (1) If f has compact support, then \hat{f} is uniformly locally constant. (2) If f is uniformly locally constant, then \hat{f} has compact support.

A subset E of \mathbb{Q}_p is said to be *uniformly discrete* if E is countable and $\inf_{x,y\in E} |x-y|_p > 0$.

Corollary

Let $\Omega \subset \mathbb{Q}_p$ be a Borel set of positive and finite Haar measure. (1) If (Ω, Λ) is a spectral pair, then Λ is uniformly discrete. (2) If (Ω, T) is a tiling pair, then T is uniformly discrete.

II. Convolution equation

Note that (Ω, T) is a tiling pair is equivalent the convolution equation

$$\sum_{t \in T} 1_{\Omega}(x - t) = 1, \quad a.e. \ x \in G.$$
 (Tilling)

And (Ω,λ) is a spectral pair is equivalent to the following convolution equation

$$\forall \xi \in \widehat{\mathbb{Q}_p}, \quad \sum_{\lambda \in \Lambda} |\widehat{\mathbf{1}_{\Omega}}(\lambda - \xi)|^2 = \mathfrak{m}(\Omega)^2. \quad \text{(Spectral)}$$

In general, we consider the convolution equation

$$\mu_E * f = 1,$$

where $\mu_E = \sum_{t \in E} \delta_t$ is a discrete measure, $0 \le f \in L^1(\mathbb{Q}_p)$, $\int_{\mathbb{Q}_p} f d\mathfrak{m} > 0$.

III. Distribution

The space \mathcal{D} of Bruhat-Schwartz test functions is, by definition, constituted of uniformly locally constant functions of compact support. A Bruhat-Schwartz distribution f on \mathbb{Q}_p is by definition a continuous linear functional on \mathcal{D} .

The discrete measure μ_T is also a distribution : for any $\phi \in \mathcal{D}$,

$$\langle \mu_E, \phi \rangle = \sum_{\lambda \in E} \phi(\lambda).$$

The Fourier transform of a distribution $f\in \mathcal{D}'$ is a new distribution $\widehat{f}\in \mathcal{D}'$ defined by the duality

$$\langle \widehat{f}, \phi \rangle = \langle f, \widehat{\phi} \rangle, \quad \forall \phi \in \mathcal{D}.$$

IV. Zeros of a distribution

A point $x \in \mathbb{Q}_p$ is called a *zero* of a distribution f if there exists an integer n_0 such that

 $\langle f, 1_{B(y,p^n)} \rangle = 0, \quad \text{for all } y \in B(x,p^{n_0}) \text{ and all integers } n \leq n_0.$

Denote by \mathcal{Z}_f the set of all zeros of f.

Lemma (2)

Let *E* be a uniformly discrete set in \mathbb{Q}_p . (1) If $\xi \in \mathcal{Z}_{\widehat{\mu}_E}$, then $S(0, |\xi|_p) \subset \mathcal{Z}_{\widehat{\mu}_E}$. (2) The set $\mathcal{Z}_{\widehat{\mu}_E}$ is bounded.

Denote
$$n_f := \min\{n \in \mathbb{Z} : \widehat{f}(x) \neq 0, \text{ if } x \in B(0, p^{-n})\}.$$

Corollary

If $\mu_E * f = 1$, then \widehat{f} has compact support. The set $\mathcal{Z}_{\widehat{\mu_E}}$ is bounded and $B(0, p^{-n_f}) \setminus \{0\} \subset \mathcal{Z}_{\widehat{\mu_E}}.$

Proof : Note that $\mu_E * f = 1$ implies $\widehat{\mu_E} \cdot \widehat{f} = \delta_0$.

V. Tiles are almost compact open

Suppose (Ω,T) is a tiling pair. Then

 $\mu_T * 1_{\Omega} = 1.$

Then module a set of zero Haar measure,

- $\Rightarrow T$ is uniformly discrete.
- $\Rightarrow \widehat{1_{\Omega}}$ has compact support.
- $\Rightarrow 1_\Omega$ is uniformly locally constant.
- $\Rightarrow \Omega$ is a union of balls with the same radius.

Since Ω has finite Haar measure, we conclude that module a zero measure set, Ω is **compact-open**. Then "Tiling \Rightarrow spectral" follows directly from the result of **Fan–Fan–Shi**.

VI. Spectral sets are tiles -I

Suppose (Ω, Λ) is a spectral pair. Then

$$\mu_{\Lambda} * \frac{|\widehat{\mathbf{1}_{\Omega}}|^2}{\mathfrak{m}(\Omega)^2} = 1.$$

Then module a set of zero Haar measure,

- $\Rightarrow \Lambda$ is uniformly discrete.
- $\Rightarrow \widehat{|\widehat{1_{\Omega}}|^2}$ has compact support.
- $\Rightarrow \Omega$ is bounded.

Without loss of generality, we assume that $\Omega \subset \mathbb{Z}_p$.

VI. Spectral sets are tiles -II

Recall that every sphere $S(0, p^{-n})$ either is contained in $\mathcal{Z}_{\widehat{\mu}_{\Lambda}}$ or does not intersect $\mathcal{Z}_{\widehat{\mu}_{\Lambda}}$. Moreover, $B(0, p^{-n_f}) \setminus \{0\} \subset \mathcal{Z}_{\widehat{\mu}_E}$.

Let

$$\begin{split} \mathbb{I}: &= \left\{ 0 \leq n < n_f : S(0, p^{-n}) \subset \mathcal{Z}_{\widehat{\mu_{\Lambda}}} \right\}, \\ \mathbb{J}: &= \left\{ 0 \leq n < n_f : S(0, p^{-n}) \cap \mathcal{Z}_{\widehat{\mu_{\Lambda}}} = \emptyset \right\}. \end{aligned}$$

Take

$$U := \left\{ \sum_{j \in \mathbb{J}} \alpha_j p^j, \alpha_j \in \{0, 1, \dots, p-1\} \right\}.$$

Then Ω is a tile of \mathbb{Z}_p with tiling complement U. Then we can also tile \mathbb{Q}_p .

Problem : Does Fuglede's conjecture hold in \mathbb{Q}_p^2 ?

Remark : Tiles and spectral sets are not necessarily almost compact open.

We partition \mathbb{Z}_p into p Borel sets of same Haar measure, Set $S=\bigcup_{n=1}^\infty B(p^n,p^{-n-1}),$ a union of countable disjoint balls, thus not compact open. Let

$$A_0 = S \cup (B(1, p^{-1}) \setminus (1+S)),$$

$$A_1 = (B(0, p^{-1}) \cup B(1, p^{-1})) \setminus A_0,$$

$$A_i = B(i, p^{-1}) \text{ for } 2 \le i \le p - 1.$$

Define

$$\Omega := \bigcup_{i=0}^{p-1} A_i \times B(i, p^{-1}) \subset \mathbb{Z}_p \times \mathbb{Z}_p.$$