Fuglede conjecture and tilings in the field of p-adic numbers

Lingmin LIAO (Université Paris-Est Créteil) (joint with Ai-Hua Fan, Shi-Lei Fan and Ruxi Shi)

Transversal Aspects of Tilings

Oléron, France
May 31th 2016

Outline

(1) Introduction
(2) Fuglede's conjecture on \mathbb{Q}_{p}
(3) Fuglede's conjecture for compact open set in \mathbb{Q}_{p}
(4) Proof of Fuglede's conjecture on \mathbb{Q}_{p}

Introduction

I. Fuglede's conjecture in \mathbb{R}^{d}

- $\Omega \subset \mathbb{R}^{d}$ be a Lebesgue measurable of finite non-zero Lebesgue measure.
- Ω is said to be spectral if there exists a set $\Lambda \subset \mathbb{R}^{d}$ such that $\left\{\frac{1}{\operatorname{Leb}(\Omega)^{1 / 2}} e^{2 \pi i x \cdot \xi}\right\}_{\xi \in \Lambda}$ form a Hilbert basis of $L^{2}(\Omega)$.
- We say that the set Ω tiles \mathbb{R}^{d} by translation, if there exists a set $T \subset \mathbb{R}^{d}$ such that $\{\Omega+t: t \in T\}$ forms a partition a.e. of \mathbb{R}^{d}, equivalently,

$$
\sum_{t \in T} 1_{\Omega}(x-t)=1, \quad L e b-a . e . .
$$

Fuglede's conjecture
Ω is a spectral set if and only if it tiles \mathbb{R}^{d}.

- Fuglede 1974 : true if either Λ or T is a lattice.

II. Results in \mathbb{R}^{d}

The conjecture is not true for $d \geq 3$ (both direction). It is still open for $d=1,2$.

- Tao 2004 : "spectral \Rightarrow tiling" is false for $d \geq 5$.
- Matolsci 2005 : "spectral \Rightarrow tiling" is false for $d=4$
- Matolsci and Kolountzakis 2006 : "spectral \Rightarrow tiling" is false for $d=3$
- Matolsci and Kolountzakis 2006 : "tiling \Rightarrow spectral" is false for $d \geq 5$
- Farkas and Gy 2006 : "tiling \Rightarrow spectral" is false for $d=4$
- Farkas, Matolsci and Móra 2006 : "tiling \Rightarrow spectral" is false for $d=3$
- losevich, Katz and Tao 2003 : true for convex planer sets.
- Łaba 2001 : true for union of two intervals.
- Lagarias, Wang 1996, 1997 : all tilings of \mathbb{R} must be periodic.

III. General setting

- G is a local compact abelian group with Haar measure \mathfrak{m}. For $x \in G, \Omega+x:=\{y+x \in G: y \in \Omega\}$.
- A character of G is a group homomorphism $\chi: G \rightarrow S^{1}$, i.e. $\chi\left(g_{1}+g_{2}\right)=\chi\left(g_{1}\right) \chi\left(g_{2}\right)$ and $\chi(0)=1$. Denote by \widehat{G} the dual group which consists of all the characters of G.
- A subset $\Omega \subset G$ of finite Haar Measure is said to be spectral if there exists a set $\Lambda \subset \widehat{G}$ which form a Hilbert basis of $L^{2}(\Omega)$. The set Λ is called a spectrum of Ω and (Ω, Λ) is called a spectral pair.
- We say that the set Ω tiles G by translation, if there exists a set $T \subset G$ such that $\{\Omega+t: t \in T\}$ forms a partition a.e. of G , equivalently,

$$
\sum_{t \in T} 1_{\Omega}(x-t)=1, \quad \text { a.e. } x \in G
$$

The set T is called a translate of Ω and (Ω, T) is called a tiling pair.

IV. Spectral set conjecture

Question : Ω is a spectral set if and only if it tiles G ?

- The case $G=\mathbb{Z}$ is open. The case $G=\mathbb{Z} / p^{n} \mathbb{Z}$ is true.
- The case $G=\mathbb{R}^{d}$ is the famous Fuglede conjecture.
- How about the case $G=\mathbb{Q}_{p}^{d}$? We confirm the conjecture when $d=1$.

Fuglede's conjecture on \mathbb{Q}_{p}

I. The p-adic numbers and the topology

- Ring \mathbb{Z}_{p} of p-adic integers :

$$
\mathbb{Z}_{p} \ni x=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

- Field \mathbb{Q}_{p} of p-adic numbers: fraction field of \mathbb{Z}_{p} :

$$
\mathbb{Q}_{p} \ni x=\sum_{i=v(x)}^{\infty} a_{i} p^{i}, \quad(\exists v(x) \in \mathbb{Z})
$$

Absolute value : $|x|_{p}=p^{-v(x)}$, metric : $d(x, y)=|x-y|_{p}$.

Remark: \mathbb{Z}_{p} is the unit ball of \mathbb{Q}_{p}. The topology on \mathbb{Q}_{p} is the same as the topology of symbolic space.

II. Arithmetic in \mathbb{Q}_{p}

Addition and multiplication : similar to the decimal way. "Carrying" from left to right.

Example : $x=(p-1)+(p-1) \times p+(p-1) \times p^{2}+\cdots$, then

- $x+1=0$. So,

$$
-1=(p-1)+(p-1) \times p+(p-1) \times p^{2}+\cdots .
$$

- $2 x=(p-2)+(p-1) \times p+(p-1) \times p^{2}+\cdots$.

We also have substraction and division.

III. Haar measure and characters on \mathbb{Q}_{p}

The Haar measure \mathfrak{m} on \mathbb{Q}_{p} is such that the unit ball \mathbb{Z}_{p} has measure 1 .

- A character $\chi \in \widehat{\mathbb{Q}_{p}}$ (where $\{x\}=\sum_{n=v_{p}(x)}^{-1} a_{n} p^{n}$):

$$
\chi(x)=e^{2 \pi i\{x\}}
$$

Notice : χ is a local constant function $\left(\chi(x)=1\right.$, if $\left.x \in \mathbb{Z}_{p}\right)$.

- For any $y \in \mathbb{Q}_{p}$, we define

$$
\chi_{y}(x)=\chi(y x)
$$

The map $y \mapsto \chi_{y}$ from \mathbb{Q}_{p} onto $\widehat{\mathbb{Q}_{p}}$ is an isomorphism.

IV. Fourier transformation on \mathbb{Q}_{p}

For $f \in L^{1}\left(\mathbb{Q}_{p}\right)$, the Fourier transform of f is defined to be

$$
\widehat{f}(y)=\int_{\mathbb{Q}_{p}} f(x) \overline{\chi_{y}(x)} d x, \quad(d x=d \mathfrak{m}) .
$$

Examples:

- $\widehat{1_{B\left(0, p^{\gamma}\right)}}(\xi)=p^{\gamma} 1_{B\left(0, p^{-\gamma)}\right.}(\xi)$
- Let $\Omega=\bigsqcup_{j=1} B\left(c_{j}, p^{\gamma}\right)$. Then $\widehat{1_{\Omega}}(\xi)=p^{\gamma} 1_{B\left(0, p^{-\gamma}\right)}(\xi) \sum_{j} \chi\left(-c_{j} \xi\right)$.

Lemma (A criterion of spectral set)

A Borel set Ω of finite Haar measure is a spectral set with Λ as a spectrum iff

$$
\forall \xi \in \widehat{\mathbb{Q}_{p}}, \sum_{\lambda \in \Lambda}\left|\widehat{1_{\Omega}}(\lambda-\xi)\right|^{2}=\mathfrak{m}(\Omega)^{2} .
$$

V. Tree structure of \mathbb{Q}_{p}

- Vertices \mathcal{T} : balls in \mathbb{Q}_{p}.
- Edges \mathcal{E} : pairs $\left(B^{\prime}, B\right) \in \mathcal{T} \times \mathcal{T}$ such that $B^{\prime} \subset B$, $\mathfrak{m}(B)=p \mathfrak{m}\left(B^{\prime}\right)$, (denoted by $\left.B^{\prime} \prec B\right)$.

VI. Bounded open sets in \mathbb{Q}_{p}

Any bounded open set O of \mathbb{Q}_{p} can be described by a subtree ($\mathcal{T}_{O}, \mathcal{E}_{O}$) of $(\mathcal{T}, \mathcal{E})$.

- Let B^{*} be the smallest ball containing O, which will be the root of the tree. For any given ball B contained in O, there is a unique sequence of balls $B_{0}, B_{1}, \cdots, B_{r}$ such that

$$
B=B_{0} \prec B_{1} \prec B_{2} \prec \cdots \prec B_{r}=B^{*} .
$$

- The set of vertices \mathcal{T}_{O} is composed of all such balls $B_{0}, B_{1}, \cdots, B_{r}$ for all possible balls B contained in O.
- The set of edges \mathcal{E}_{O} is composed of all edges $B_{i} \prec B_{i+1}$ as above.

VII. Comapact open set in \mathbb{Q}_{p}

Any compact open set can be described by a finite tree, because a compact open set is a disjoint finite union of balls of same size. In this case, as in the above construction of subtree we only consider these balls of same size as B.

$$
\text { Figure : } \Omega=3 \mathbb{Z}_{3} \sqcup\left(2+3 \mathbb{Z}_{3}\right) \sqcup\left(4+27 \mathbb{Z}_{3}\right) \sqcup\left(22+27 \mathbb{Z}_{3}\right) .
$$

VIII. p-homogenous subsets in \mathbb{Q}_{p}

- A subtree $\left(\mathcal{T}^{\prime}, \mathcal{E}^{\prime}\right)$ is said to be homogeneous if the number of descendants of $B \in \mathcal{T}^{\prime}$ depends only on $|B|$. If this number is either 1 or p, we call $\left(\mathcal{T}^{\prime}, \mathcal{E}^{\prime}\right)$ a p-homogeneous tree.
- An bounded open set is said to be homogeneous (resp. p-homogeneous) if the corresponding tree is homogeneous (resp. p-homogeneous).
- A bounded open p-homogenous set must be compact.

VIII. p-homogenous subsets in \mathbb{Q}_{p}

Figure: A 2-homogenous tree

VIII. p-homogenous subsets in \mathbb{Q}_{p}

Figure: A 3-homogeneous tree

IX. Fuglede's conjecture on \mathbb{Q}_{p}

Theorem (A. Fan, S. Fan, L, R. Shi, arXiv :1512.08904)

A Borel set $\Omega \in \mathbb{Q}_{p}$ is a spectral set if and only if it tiles \mathbb{Q}_{p}. Moreover, Ω is an almost compact open set, and the corresponding compact open set is p-homogenous.

- A set $\Omega \subset \mathbb{Q}_{p}$ is called an almost compact open set, if \exists compact open $\Omega^{\prime} \subset \mathbb{Q}_{p}$ such that $\mathfrak{m}\left(\Omega \backslash \Omega^{\prime}\right)=\mathfrak{m}\left(\Omega^{\prime} \backslash \Omega\right)=0$.

Fuglede's conjecture for

compact open set in \mathbb{Q}_{p}

I. Tree structure of $\mathbb{Z} / p^{\gamma} \mathbb{Z}$

We identify $\mathbb{Z} / p^{\gamma} \mathbb{Z}=\left\{0,1, \cdots, p^{\gamma}-1\right\}$ with $\{0,1,2, \cdots p-1\}^{\gamma}$ which is considered as a finite tree, denoted by $\mathcal{T}^{(\gamma)}$.

- Vertices $\mathcal{T}^{(\gamma)}$: consists of the disjoint union of the sets $\mathbb{Z} / p^{n} \mathbb{Z}, 0 \leq n \leq \gamma$. Each vertex, except the root of the tree, is identified with a sequence $t_{0} t_{1} \cdots t_{n}$ with $0 \leq n \leq \gamma$ and $t_{i} \in\{0,1, \cdots, p-1\}$.
- Edges : consists of pairs $(x, y) \in \mathbb{Z} / p^{n} \mathbb{Z} \times \mathbb{Z} / p^{n+1} \mathbb{Z}$ with $x \equiv y$ $\bmod p^{n}$, where $0 \leq n \leq \gamma-1$.
For example, each point t of $\mathbb{Z} / p^{\gamma} \mathbb{Z}$ is identified with $t_{0} t_{1} \cdots t_{\gamma-1}$, which is a boundary point of the tree.

I. Tree structure of $\mathbb{Z} / p^{\gamma} \mathbb{Z}$

Figure : The set $\mathbb{Z} / 3^{4} \mathbb{Z}=\{0,1,2, \cdots, 80\}$ is considered as a tree $\mathcal{T}^{(4)}$.

II. p-homogenous subsets $\mathbb{Z} / p^{\gamma} \mathbb{Z}$

Each subset $C \subset \mathbb{Z} / p^{\gamma} \mathbb{Z}$ will determine a subtree of $\mathcal{T}^{(\gamma)}$, denoted by \mathcal{T}_{C}, which consists of the paths from the root to the points in C.
For each $0 \leq n \leq \gamma$, denote
$C_{\bmod p^{n}}:=\left\{x \in \mathbb{Z} / p^{n} \mathbb{Z}: \exists y \in C\right.$, such that $\left.x=y \bmod p^{n}\right\}$.

- Vertices \mathcal{T}_{C} : consists of the disjoint union of the sets

$$
C_{\bmod p^{n}}, 0 \leq n \leq \gamma .
$$

- Edges : consists of pairs $(x, y) \in C_{\bmod p^{n}} \times C_{\bmod p^{n+1}}$ with $x \equiv y$ $\bmod p^{n}$, where $0 \leq n \leq \gamma-1$.
The set C is called a p-homogenous subsets of $\mathbb{Z} / p^{\gamma} \mathbb{Z}$ iff the corresponding tree \mathcal{T}_{C} is p-homogenous.
II. p-homogenous subsets $\mathbb{Z} / p^{\gamma} \mathbb{Z}$

Figure : For $p=3, \gamma=3$, the tree p-homogeneous tree determined by $\{0,4,8,9,13,17,18,22,26\}$.

III. Spectral sets and tiles in $\mathbb{Z} / p^{\gamma} \mathbb{Z}$

Recall that the Fourier transform of a function f defined on $\mathbb{Z} / p^{\gamma} \mathbb{Z}$ is defined as

$$
\widehat{f}(k)=\sum_{x \in \mathbb{Z} / p^{\gamma} \mathbb{Z}} f(x) e^{-\frac{2 \pi i k x}{p \gamma}},\left(\forall k \in \mathbb{Z} / p^{\gamma} \mathbb{Z}\right) .
$$

Theorem (Fan-Fan-Shi, arXiv 2015) Let $C \subset \mathbb{Z} / p^{\gamma} \mathbb{Z}$. The following statements are equivalent.
(1) C is p-homogenous.
(2) There exists a subset $I \subset\{0, \cdots, \gamma\}$ such that $\sharp I=\log _{p}(\sharp C)$ and

$$
\widehat{1_{C}}\left(p^{\ell}\right)=0 \text { for } \ell \in I .
$$

(3) C is a spectral set in $\mathbb{Z} / p^{\gamma} \mathbb{Z}$, with

$$
\Lambda=\left\{\sum_{i \in I} a_{i} p^{-i-1}: a_{i} \in I\right\}
$$

(4) C tiles $\mathbb{Z} / p^{\gamma} \mathbb{Z}$, by

$$
T=\left\{\sum_{j \in J} a_{j} p^{j}: a_{j} \in\{0, \cdots p-1\}\right\}, \quad \text { where } J:=\{0, \cdots, \gamma\} \backslash I .
$$

III. Spectral sets and tiles in $\mathbb{Z} / p^{\gamma} \mathbb{Z}$

Figure: Here, $p=3, \gamma=3, I=\{1,3\}, J=\{0,2\}$.

IV. Compact open spectral sets \mathbb{Q}_{p}

W. I. o. g, we assume that Ω is of the form

$$
\Omega=\bigsqcup_{c \in C}\left(c+p^{\gamma} \mathbb{Z}_{p}\right),
$$

where $\gamma \geq 1$ is an integer and $C \subset\left\{0,1, \cdots, p^{\gamma}-1\right\}$.
Theorem (Fan-Fan-Shi, arXiv 2015) The following are equivalent.
(1) \mathcal{T}_{C} is a p-homogenous tree.
(2) Ω is p-homogenous.
(3) Ω tiles \mathbb{Q}_{p}.
(4) Ω is a spectral set in \mathbb{Q}_{p}.

Proof of Fuglede's conjecture on \mathbb{Q}_{p}

I. Fourier transformation

A complex function f defined on \mathbb{Q}_{p} is called uniformly locally constant if there exists $n \in \mathbb{Z}$ such that

$$
f(x+u)=f(x) \quad \forall x \in \mathbb{Q}_{p}, \forall u \in B\left(0, p^{n}\right)
$$

Lemma

Let $f \in L^{1}\left(\mathbb{Q}_{p}\right)$ be a complex-value integrable function.
(1) If f has compact support, then \widehat{f} is uniformly locally constant.
(2) If f is uniformly locally constant, then \widehat{f} has compact support.

A subset E of \mathbb{Q}_{p} is said to be uniformly discrete if E is countable and $\inf _{x, y \in E}|x-y|_{p}>0$.

Corollary

Let $\Omega \subset \mathbb{Q}_{p}$ be a Borel set of positive and finite Haar measure.
(1) If (Ω, Λ) is a spectral pair, then Λ is uniformly discrete.
(2) If (Ω, T) is a tiling pair, then T is uniformly discrete.

II. Convolution equation

Note that (Ω, T) is a tiling pair is equivalent the convolution equation

$$
\begin{equation*}
\sum_{t \in T} 1_{\Omega}(x-t)=1, \quad \text { a.e. } x \in G \tag{Tilling}
\end{equation*}
$$

And (Ω, λ) is a spectral pair is equivalent to the following convolution equation

$$
\begin{equation*}
\forall \xi \in \widehat{\mathbb{Q}_{p}}, \quad \sum_{\lambda \in \Lambda}\left|\widehat{1_{\Omega}}(\lambda-\xi)\right|^{2}=\mathfrak{m}(\Omega)^{2} \tag{Spectral}
\end{equation*}
$$

In general, we consider the convolution equation

$$
\mu_{E} * f=1
$$

where $\mu_{E}=\sum_{t \in E} \delta_{t}$ is a discrete measure, $0 \leq f \in L^{1}\left(\mathbb{Q}_{p}\right)$, $\int_{\mathbb{Q}_{p}} f d \mathfrak{m}>0$.

III. Distribution

The space \mathcal{D} of Bruhat-Schwartz test functions is, by definition, constituted of uniformly locally constant functions of compact support. A Bruhat-Schwartz distribution f on \mathbb{Q}_{p} is by definition a continuous linear functional on \mathcal{D}.
The discrete measure μ_{T} is also a distribution : for any $\phi \in \mathcal{D}$,

$$
\left\langle\mu_{E}, \phi\right\rangle=\sum_{\lambda \in E} \phi(\lambda)
$$

The Fourier transform of a distribution $f \in \mathcal{D}^{\prime}$ is a new distribution $\widehat{f} \in \mathcal{D}^{\prime}$ defined by the duality

$$
\langle\widehat{f}, \phi\rangle=\langle f, \widehat{\phi}\rangle, \quad \forall \phi \in \mathcal{D} .
$$

IV. Zeros of a distribution

A point $x \in \mathbb{Q}_{p}$ is called a zero of a distribution f if there exists an integer n_{0} such that

$$
\left\langle f, 1_{B\left(y, p^{n}\right)}\right\rangle=0, \quad \text { for all } y \in B\left(x, p^{n_{0}}\right) \text { and all integers } n \leq n_{0} .
$$

Denote by \mathcal{Z}_{f} the set of all zeros of f.

Lemma (2)

Let E be a uniformly discrete set in \mathbb{Q}_{p}.
(1) If $\xi \in \mathcal{Z}_{\widehat{\mu_{E}}}$, then $S\left(0,|\xi|_{p}\right) \subset \mathcal{Z}_{\widehat{\mu_{E}}}$.
(2) The set $\mathcal{Z}_{\widehat{\mu_{E}}}$ is bounded.

Denote $n_{f}:=\min \left\{n \in \mathbb{Z}: \widehat{f}(x) \neq 0\right.$, if $\left.x \in B\left(0, p^{-n}\right)\right\}$.

Corollary

If $\mu_{E} * f=1$, then \widehat{f} has compact support. The set $\mathcal{Z}_{\widehat{\mu_{E}}}$ is bounded and

$$
B\left(0, p^{-n_{f}}\right) \backslash\{0\} \subset \mathcal{Z}_{\widehat{\mu_{E}}} .
$$

Proof: Note that $\mu_{E} * f=1$ implies $\widehat{\mu_{E}} \cdot \widehat{f}=\delta_{0}$.

V. Tiles are almost compact open

Suppose (Ω, T) is a tiling pair. Then

$$
\mu_{T} * 1_{\Omega}=1
$$

Then module a set of zero Haar measure,
$\Rightarrow T$ is uniformly discrete.
$\Rightarrow \widehat{1_{\Omega}}$ has compact support.
$\Rightarrow 1_{\Omega}$ is uniformly locally constant.
$\Rightarrow \Omega$ is a union of balls with the same radius.
Since Ω has finite Haar measure, we conclude that module a zero measure set, Ω is compact-open. Then "Tiling \Rightarrow spectral" follows directly from the result of Fan-Fan-Shi.

VI. Spectral sets are tiles -I

Suppose (Ω, Λ) is a spectral pair. Then

$$
\mu_{\Lambda} * \frac{\left|\widehat{1_{\Omega}}\right|^{2}}{\mathfrak{m}(\Omega)^{2}}=1
$$

Then module a set of zero Haar measure,
$\Rightarrow \Lambda$ is uniformly discrete.
$\Rightarrow \widehat{\mid{\overline{1_{\Omega}}}^{2}}$ has compact support.
$\Rightarrow \Omega$ is bounded.
Without loss of generality, we assume that $\Omega \subset \mathbb{Z}_{p}$.

VI. Spectral sets are tiles -II

Recall that every sphere $S\left(0, p^{-n}\right)$ either is contained in $\mathcal{Z}_{\widehat{\mu_{\Lambda}}}$ or does not intersect $\mathcal{Z}_{\widehat{\mu_{\Lambda}}}$. Moreover, $B\left(0, p^{-n_{f}}\right) \backslash\{0\} \subset \mathcal{Z}_{\widehat{\mu_{E}}}$.
Let

$$
\begin{aligned}
& \mathbb{I}:=\left\{0 \leq n<n_{f}: S\left(0, p^{-n}\right) \subset \mathcal{Z}_{\widehat{\mu_{\Lambda}}}\right\}, \\
& \mathbb{J}:=\left\{0 \leq n<n_{f}: S\left(0, p^{-n}\right) \cap \mathcal{Z}_{\widehat{\mu_{\Lambda}}}=\emptyset\right\} .
\end{aligned}
$$

Take

$$
U:=\left\{\sum_{j \in \mathbb{J}} \alpha_{j} p^{j}, \alpha_{j} \in\{0,1, \ldots, p-1\}\right\} .
$$

Then Ω is a tile of \mathbb{Z}_{p} with tiling complement U. Then we can also tile \mathbb{Q}_{p}.

Fuglede's conjecture in \mathbb{Q}_{p}^{2}

Problem : Does Fuglede's conjecture hold in \mathbb{Q}_{p}^{2} ?
Remark : Tiles and spectral sets are not necessarily almost compact open.
We partition \mathbb{Z}_{p} into p Borel sets of same Haar measure, Set $S=\bigcup_{n=1}^{\infty} B\left(p^{n}, p^{-n-1}\right)$, a union of countable disjoint balls, thus not compact open. Let

$$
\begin{aligned}
A_{0} & =S \cup\left(B\left(1, p^{-1}\right) \backslash(1+S)\right) \\
A_{1} & =\left(B\left(0, p^{-1}\right) \cup B\left(1, p^{-1}\right)\right) \backslash A_{0}, \\
A_{i} & =B\left(i, p^{-1}\right) \text { for } 2 \leq i \leq p-1 .
\end{aligned}
$$

Define

$$
\Omega:=\bigcup_{i=0}^{p-1} A_{i} \times B\left(i, p^{-1}\right) \subset \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

