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0. Introduction

Point of view of mathematics: Aperiodic order.

Point of view of physics: Quasicrystals.

1. What is aperiodic order?

2. Why study aperiodic order?

3. How to study aperiodic order?



0.1. What is aperiodic order?

Aperiodic order is a specific form of long range order beyond lattice
structures. There is no axiomatic framework (yet). Typical features
include:

• Point diffraction (−− > experiment).

• Low complexity (zero entropy).

• Repetitivity.

• Deterministic rules.

Note: Aperiodic order is not about small parameters.









The Fibonacci model

S : {0,1} −→ {0,1}∗, S(0) = 01, S(1) = 0.

S0(0) = = 0
S1(0) = S(0) = S(0) = 01
S2(0) = S(S(0)) = S(01) = 010
S3(0) = S(S2(0)) = S(010) = 01001
S4(0) = S(S3(0)) = S(01001) = 01001010
S5(0) = S(S4(0)) = S(01001010) = 0100101001001

Sn+1(0) = Sn(S(0)) = Sn(0)Sn−1(0).

Infinite word: ω = lim
n→∞Sn(0).



0.2. Why study aperiodic order?

• Study of disorder (and related phenomena) is one of the most
important issues in mathematics and physics today!

• Aperiodic order is a specific form of intermediate disorder of sub-
stantial conceptual interest. (Morse / Hedlund ’42, ..., Lagarias
’99, Lagarias/Pleasants ’03, ...)

• Fourier expansion of sets (Y. Meyer ’72, ...)

• Quasicrystals (Shechtman/Blech/Gratias/Cahn ’82 (published
’84), Nobel prize in Chemistry for Shechtman in 2011)

– Sharp diffraction peaks < −−− > long range order.

– 5-fold symmetry < −−− > no lattice.



0.3. How to study aperiodic order?

• FLC Delone sets / finite set of tiles : complexity and geometric

features.

• Translation bounded measures: generalized almost periodicity.

Important concept hull : topological space and dynamical system.

Gives powerful methods to study aperiodic order.

In one-dimensional case: Sequences and subshifts over a finite alpha-

bet.



I. FLC Delone sets and discrete geometry.

1. Basic concepts for point sets in R
N .

2. Lattices and crystallographic sets.

3. FLC-Delone sets and Lagarias’ theorem.

4. Repetitivity.

5. Aperiodicity and repulsion.

6. Linear repetitivity.

7. Patch counting, dense repetitivity and vanishing entropy.

8. Uniform patch frequency.

9. Meyer-Moody-theory and a result of Lagarias.



I.1. Basic concepts for point sets in R
N.

Λ ⊂ R
N is called

• uniformly discrete if there exists a σ > 0 with

Uσ(x) ∩ Uσ(y) = ∅
for all x, y ∈ Λ with x 	= y.

• relatively dense if there exists a � > 0 with

B�(x) ∩ Λ 	= ∅
for all x ∈ R

N .

• Delone set if it is both uniformly discrete and relatively dense.



Point sets versus tiling. We talk about point sets but show pictures

of tilings. Abstract background:

Tiling − − − > point set: Take in each tile the center of mass. This

gives a point set with similar properties.

Point set −−− > tiling: To each x ∈ Λ consider its Voronoi cell

V (x) := {p ∈ R
N : ‖p− x‖ ≤ ‖p− y‖ all y ∈ Λ}.

These Voronoi cells give a tiling of RN consisting of convex polytopes.

These two procedures are ’morally’ inverse to each other.



I.2. Lattices and crystallographic sets.

Lattices are the paradigm of order in our context. Aperiodic order will

be about structures with weak lattice type properties.

Definition. A lattice in R
N is a discrete subgroup with compact quo-

tient.

Alternatively, Γ ⊂ R
N lattice means:

• Γ uniformly discrete.

• Γ relatively dense.

• Γ subgroup of R
N .



Γ ⊂ R
N is a lattice if and only if there exists a basis a1, . . . , aN of R

N

with

Γ = LinZ{aj : j = 1, . . . , N} = (a1, . . . , aN)ZN.

If Γ is a lattice then so is

Γ ∗ := {k ∈ R
N : e2πkl = 1 for all k ∈ Γ}.

Then, Γ ∗ is called the dual lattice.

Λ ⊂ R
N is called crystallographic if it is uniformly discrete and invariant

under a lattice Γ .

Thus, Λ crystallographic if and only if

Λ = F + Γ

with a lattice Γ and F finite.



I.3. FLC-Delone sets and Lagarias’ theorem.

A piece of philosophy.

Γ ⊂ R
N is a subgroup of R

N if and only if

Γ − Γ ⊂ Γ.

Consider how far general Delone set Λ ⊂ R
N is from being a lattice

by investigating Λ− Λ.

In order for this to make sense we will need at the very least a certain

finiteness property of Λ− Λ.



Lemma (Lagarias ’99, Schlottmann ’00). For Λ ⊂ R
N uniformly dis-

crete the following assertions are equivalent:

(i) �(Λ− Λ) ∩BR(0) < ∞ for every R > 0.

(ii) Λ− Λ is discrete and closed.

(iii) �{(Λ− x) ∩BR(0) : x ∈ Λ} < ∞ for all R > 0.

A Delone set Λ ⊂ R
N is said to be of finite local complexity (FLC)

if it satisfies one of the equivalent conditions of the previous lemma.

Such a Λ is also called an FLC-Delone set.

Remark. Typically sets generated by stochastic processes are not

Delone sets of finite local complexity.



The concept of patch.

Λ ⊂ R
N Delone set: A patch of size R of Λ is a set of the form

P (x,R) := (Λ− x) ∩BR(x)

for x ∈ Λ.

Clearly, Λ Delone has finite local complexity if and only if for any

R > 0 there exist only finitely many patches of size R.



The one-dimensional case.

Sets of finite local complexity in R can be generated as follows:

- Take a finite set of intervals in R.

- Cover R by translates of these intervals.

- Take the boundary points of the intervals.

Then these boundary points will be an FLC-Delone set.

The converse is true as well:



Let Λ be an FLC-Delone set in R with Λ ∩B�(p) 	= ∅ for all p ∈ R.

By the relative denseness condition, distances between ’neighbours’

will not exceed 2�.

By FLC, there will then only be finitely many elements in

L := {y − x : y neighbour of x with x < y}.

Now, clearly, Λ arises from tiling R with tiles of the form [0, l) with

l ∈ L.

A higher dimensional analogue is valid as well:



Theorem (Lagarias ’99). Let Λ ⊂ R
N be a Delone set and � > 0 with

Λ ∩B�(p) 	= ∅
for any p ∈ R

N . Then, the following assertions are equivalent:

(i) Λ is of finite local complexity.

(ii) �{(Λ− x) ∩B2�(0) : x ∈ Λ} < ∞

Consequence. We may think of Delone sets of finite local complexity

as geometric analogues to sequences over a finite alphabet (with the

alphabet corresponding to patches of size 2�).



Finite local complexity is not in itself a sign of order. (Compare coin

tossing experiment and Bernoulli subshift.)

However, it allows one to define and study notions of order.

This is done next.



I. 4-8: Notions of order for FLC-Delone sets.

We will now meet (and study) various concepts of order and aperi-

odicity in FLC-Delone sets:

• Repetitivity.

• Aperiodicity and repulsion.

• Linear repetitivity.

• Patch counting, dense repetitivity and vanishing entropy.

• Uniform patch frequency.



I.4. Repetitivity

Given Λ ⊂ R
N FLC-Delone set, P patch of size R of Λ i.e. P is of

form

P := (Λ− x) ∩BR(x)

for some x ∈ Λ.

The locator set of P also known as derived Delone set with respect

to P is defined as

ΛP := {y ∈ Λ : (Λ− y) ∩BR(y) = P}.

Definition (Repetitivity). An FLC-Delone set is called repetitive if

the locator set of any of its patches is relatively dense (and, hence, a

Delone set as well).

Remark. Any lattice and any crystallographic set is repetitive.



FLC-Delone set is repetitive if and only if for any patch P there exists

a radius �(P ) > 0 such that

B�(P )(p) ∩ ΛP 	= ∅
for any p ∈ R

N , i.e. such that any ball of radius �(P ) contains the

center of a copy of P .

Remark. There is no relation between the size R of the patch P and

�(P ).

Here is what repetitivity means:





The repetitivity function

Λ FLC-Delone set. Define

RepΛ : [1,∞) −→ [0,∞),RepΛ(R) := {max �(P ) : P patch of size R}.

Remark. We need to impose a lower bound on the possible values of

R in order to deal with the patch consisting of one point only.

Note. If Λ is crystallographic then RepΛ is bounded. (Converse holds

as well, as we will see shortly.)



I.5. Aperiodicity and repulsion

An FLC-Delone set admits the period p ∈ R
N if Λ+ p = Λ.

Lemma (Repulsion property). Let Λ be repetitive FLC-Delone set.

If Λ does not admit a non-trivial period, then �(Pn) → ∞ for any

sequence of patches Pn with sizes Rn → ∞.

Remark. Without the assumption of repetitivity, the statement does

not hold. (Consider e.g. 2Z ∪ {1} ⊂ R....)

Corollary. Let Λ be a repetitive FLC-Delone set. If Λ does not admit

a non-trivial period, then RepΛ(R) → ∞ for R → ∞.



Remark. We may call a repetitive FLC-Delone set aperiodic if it does

not admit a non-trivial period.



A lower bound for the repetitivity function

Theorem (Lagarias / Pleasants ’03, ’02.). Let Λ be a repetitive FLC-

Delone set. If Λ satisfies

RepΛ(R) ≤ R

3
for some R > 0, then Λ is crystallographic.

Remark - History. Corresponding result for subshifts due to Morse

/ Hedlund ’38 (without the constant 3).



Aperiodic order and the gap

There is a gap between

• the ordered world having bounded Rep and

• the non-ordered world having at least linear growth of Rep.

We have met this gap already in the symbolic case in the Morse /

Hedlund theorem and we are going to meet it again.



I.6. Linear repetitivity

The previous result suggests to single out the following class of mo-
dels.

Definition (Linear repetitiv). Let Λ be a Delone set of finite local
complexity. If there exists a C > 0 with

RepΛ(R) ≤ CR

for all R ≥ 1, then Λ is called linearly repetitive.

Thus, Λ is linearly repetitive if there exists C ≥ 0 such that for any
patch P with radius R ≥ 0 we have

BCR(y) ∩ ΛP 	= ∅
for any y ∈ R

N .

Remark. Linearly repetitive sets were brought forward by Lagarias /
Pleasants ’99 to model perfectly ordered quascicrystals, see below for
further history.



Partial history

In the symbolic case:

- studied by Boshernitzan in the 90ies (unpublished);

- introduced under the name linear recurrence by Durand / Host /

Skau ’99;

- thorough study and characterization by Durand ’00;

- appears under the name of window property in Damanik / Zare ’00

in the context of primitive substitutions.



Partial history - continued.

In the tiling / Delone situation:

- appears in Solomyak ’98 under the name uniform repetitivity in the

context of primitive substitution.

- featured by Lagarias / Pleasants ’03 (preprint from ’99) under the

name linear repetitivity.



I.7. Patch counting, dense repetitivity and vanishing entropy

Patch counting function gives notion capturing order features:

pΛ(R) := �{P : P is patch of size R in Λ}.

General idea: Slow growth of pΛ means some form of order.

Remark. If Λ is crystallographic then pΛ is bounded. Converse holds

as well; see next theorem.



Theorem (Lagarias / Pleasants ’03). Let Λ be an FLC-Delone set

with parameter � of relative denseness. If there exists R > 0 with

pΛ(R) < R
� then Λ is crystallographic.

Remark. (a) Analogue to a result of Morse / Hedlund ’38 in the

symbolic case. (Minimal word complexity is n + 1 in the aperiodic

case.)

(b) It was conjectured by Lagarias / Pleasants ’03 that there exists

c = c(σ, �,N) such that

pΛ(R)

RN−k+1
< c

for all sufficiently large R implies that Λ has at least k linearly inde-

pendent periods. The theorem proves the case k = N . The general

case was disproved by Cassaigne ’06.

(c) Compare discussion Nivats conjecture and recent results of Kra /

Cyr.



Connections between RepΛ and pΛ.

Theorem (Lagarias / Pleasants ’03). Let Λ be a repetitive FLC-

Delone set. Then,

RepΛ(R) ≥ σ · ((pΛ(R))1/n − 1).

Remark. As shown by Lagarias / Pleasants ’03, there is no upper

bound (even for FLC-Delone sets Λ with polynomial growth of pΛ
coming form cut and project schemes).



Densely repetitive sets. The previous results suggests to single out

the following class of sets:

Definition.A repetitive FLC-Delone set Λ is called densely repetitive

if there exists a C > 0 with

RepΛ(R) ≤ C · (pΛ(R))1/n

for all large R.

Remark. Lagarias / Pleasants ’03 bring forward both linearly repeti-

tive and densely repetitive sets as ’perfectly ordered’ aperiodic sets.



Relationship between densely repetitive and linearly repetitive

sets.

Theorem (L. ’04). Let Λ be a linearly repetitive FLC-Delone set,

which does not admit a nontrivial period. Then, Λ is densely repetitive.

Remark. Solves a conjecture in Lagarias / Pleasants ’03.



Complexity of aperiodic linearly repetitive Delone sets.

Proof amounts to showing

pΛ(R) ≥ κ ·RN

for linearly repetitive FLC-Delone sets (without periods). This has

following consequence.

Corollary. Let Λ be a linearly repetitive FLC-Delone set, which does

admit a non-trivial period. Then, there exist κ, λ > 0 with

κ ·RN ≤ pΛ(R) ≤ λ ·RN

for all R ≥ 1.

Remark. Compare Durand ’00 for subshift version.



Patch counting entropy.

For an FLC-Delone set one defines the patch counting entropy by

hpc(Λ) := lim
R→∞

log pΛ(R)

|BR(0)|
.

(Existence follows from suitable use of subadditivity.)

Corollary. Any linearly repetitive Delone set has hpc(Λ) = 0.



I.8. Uniform patch frequencies

Λ FLC-Delone set has uniform patch frequencies if for any patch P

of size R the limit

lim
S→∞

�{x ∈ BS(a) ∩ Λ : (Λ− x) ∩BR(x) = P}
|BS(a)|

exists uniformly in a ∈ R
N .

Remark. For lattices this holds. In fact, there the limit is always the

density of the lattice.



Remark. Both repetitivity and uniform patch frequency can be seen

as notions or order giving precise version of ’regular distribution’ of

patches in Λ.

Repetitivity is a topological notion. Uniform patch frequency is a sta-

tistical notion.

They are independent of each other.



Examples for uniform patch frequencies.

Main results of Lagarias / Pleasants ’03 show that both

• linearly repetitive,

• densely repetitive

FLC-Delone sets have uniform patch-frequencies.



Remarks on averaging for subadditive sequences:

(a) As shown by Damanik / Lenz ’04 linearly repetitive Delone sets

even allow for a subadditive ergodic theorem (which implies uniform

patch frequencies).

(b) As shown by Besbes / Boshernitzan / Lenz ’12 one can even cha-

racterize linear repetitivity by validity of a subadditive ergodic theorem

(together with ’roundness’ condition on Voronoi cells).



Remarks on averaging for subadditive sequences - symbolic ca-

se:

Let ω be repetitive sequence over a finite alphabet be given and L(ω)
the associated language.

F : L(ω) −→ R subadditive if

F (xy) ≤ F (x) + F (y),

whenever xy ∈ L(ω).

ω satisfies positivity of weights if there exists a c > 0 with

lim
|x|→∞

�v(x)|v|
|x| ≥ c

for all v ∈ L(ω).



Theorem. The following assertions are equivalent:

(i) For any subadditive F the limit

lim
|x|→∞

F (x)

|x|
exists.

(ii) ω satisfies positivity of weights.

(iii) ω is linearly recurrent.

Proof of (i)⇐⇒ (ii) due to L. ’01, Proof of (ii)⇐⇒ (iii) due to Bos-

hernitzan 90ies (unpublished).



I.9. Meyer-Moody-theory and a result of Lagarias

We now turn to a class of Delone sets with properties very similar
to lattices. The corresponding theory goes back to Meyer ’73 and
was then further developed by Moody ’96 and Schlottmann ’00 (and
many more....)

Theorem (Meyer ’73). Let Λ ⊂ R
N be an FLC-Delone set. Then, the

following assertions are equivalent:

(i) Λ− Λ is uniformly discrete.

(ii) For any ε > 0 the set

{k ∈ R
N : |e2πikx − 1| ≤ ε for all x ∈ Λ }

is relatively dense.

Such Delone sets are nowadays known as Meyer sets.



Remarks.

Compare lattices!

FLC means that Λ− Λ is locally finite. The Meyer property is a sub-

stantial strengthening of FLC.

The Meyer property is very strong (as can be seen from both condi-

tions in the theorem).

As discussed above FLC is not an order requirement (as typically

tilings with finitely many tiles will have this property).

The Meyer property is an order requirement. A ’typical’ FLC set will

not be Meyer: Take e.g. two intervals with length 1 and α irrational

and consider a generic tiling of R with these tiles.



The previous considerations give two equivalent ways in which Meyer

sets are generalizations of lattices.

Now, we are heading for yet another such characterization: Meyer sets

are ’shadows of lattices’ (in the platonic sense).





Cut and project schemes and model sets. A cut and project sche-

me (RN,H, L̃) is given as follows:

R
N π←−−− R

N ×H
πint−−−→ H

∪ ∪ ∪dense

L
1−1←−−−− L̃ −−−→ L


‖ ‖
L


−−−−−−−−−→ L


where

• H is a locally compact, σ-compact group, called the internal space,

• L̃ is a lattice in R
N ×H,

• π and πint are the canonical projections.

• π is one-to-one and πint has dense range.



Then, L := π(L̃) and L
 := πint(L̃) are groups. As π is one-to-one,

there is a uniquely defined group homomorphism


 : L −→ L


such that (x, h) ∈ L̃ if and only if h = x
.

Given an cut and project scheme (RN,H, L̃) we define for a so called

window W ⊂ H the associated subset of R
N by

�(W ) := {x ∈ L : x
 ∈ W}.

Example. Fibonacci chain.

Example. Penrose tiling.



Let a cut and project scheme (RN,H, L̃) be given and

�(W ) := {x ∈ L : x
 ∈ W}.

Proposition. ∅ 	= V ⊂ H open. Then, �(V ) is relatively dense.

Proposition. K ⊂ H compact. Then, �(K) is uniformly discrete.

Theorem. Let Λ =�(W ) for a compact W with non-empty interion.

Then, Λ is uniformly discrete and relatively dense. Moreover, Λ−Λ is

uniformly discrete as well. In particular, Λ is Meyer (and, hence, also

FLC).



Meyer sets and cut and project schemes.

Here comes the characterization of Meyer sets via cut and project

schemes.

Theorem (Meyer ’73, Moody ’96). Let Λ be a Delone set. Then, Λ

is a Meyer set if and only if there exists a cut and project scheme and

a compact W ⊂ H with Λ ⊂�(W ).



The previous considerations give three equivalent ways in which Meyer

sets are generalizations of lattices.

Now, we are heading for yet another such characterization:



A result of Lagarias.

Recall that a subset Γ of R
N is a group if and only if Γ − Γ ⊂ Γ .

Theorem (Lagarias ’99). Let Λ be an FLC-Delone set. Then, Λ is a

Meyer set if and only if

Λ− Λ ⊂ Λ+ F

for some finite F .

Remark. The results says
⋃
x∈Λ

(Λ− x) ⊂ ⋃
y∈F

(Λ+ y)

for Meyer sets.



Summary. Meyer sets have many claims to be considered as genera-

lized lattices:

Theorem. Let Λ be an FLC-Delone set. Then, the following asserti-

ons are equivalent:

(i) Λ− Λ is uniformly discrete.

(ii) Λ− Λ ⊂ Λ+ F for a finite set F .

(iii) Λ is harmonious i.e.

{k : |e2πikk − 1| ≤ ε for all x ∈ Λ}
is relatively dense for any ε > 0.

(iv) Λ comes from a cut and project scheme.



II. Dynamical systems and the hull of an
FLC-Delone set

1. The torus.

2. The hull and its topology.

3. Characterizing notions of order via dynamical systems.

4. Continuous eigenfunctions and the MEF.

5. Meyer sets and the Kellendonk-Sadun theorem.

6. The hierarchy of Meyer dynamical systems.



II.1. The torus

Γ lattice in R
N gives rise to torus

T := R
N/Γ.

There is a canonical map j : RN −→ T, j(t) := t+ Γ.

This induces an action of R
N on T via

R
N × T −→ T, (t, ξ) �→ j(t) + ξ.

The map j is onto. Thus, this action is minimal and uniquely ergodic

(i.e. each orbit is dense and there is a unique invariant probability

measure on T viz Haar measure).



II.2. The hull and its topology

Consider an FLC-Delone set Λ. The hull of Λ is defined as

Ω(Λ) := {t+ Λ : t ∈ RN},
where the closure is taken in a certain topology. This topology can

be defined in various ways:

• via a stereographic projection.

• via weak topology on measures.

• via a metric: Λ1 and Λ2 are close if they agree on a large ball after

a small translation.

’



Theorem. The hull Ω(Λ) is compact and

α : RN ×Ω(Λ) −→ Ω(Λ), (t, Λ) �→ t+ Λ,

is a continuous action of R
N on Λ.

By the theorem (Ω(Λ),RN) is a topological dynamical system.

Remark. This approach to tilings (Delone sets) via hulls goes (at

least) back to work of Radin ’90 and Radin / Wolf ’91; see also

Rudolph.



II.3. Characterizing notions of order via dynamical systems

Recall: A dynamical system (Ω,RN) is

• minimal if each orbit is dense,

• uniquely ergodic if there exists only one invariant probability mea-

sure on Ω.


