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§1 Cut and project sets
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Cut and project sets: definition

For k > d ≥ 1, start with the following data:
I Subspaces E and Fπ of Rk , dim(E) = d , E ∩ Fπ = {0},

and
Rk = E + Fπ,

I Natural projections π and π∗ from Rk onto E and Fπ,
I A subsetWπ ⊆ Fπ, called the window,
I A point s ∈ Rk .

The k to d cut and project set defined by this data is:

Ys = π{n + s ∈ Zk : π∗(n + s) ∈ Wπ}.



Cut and project sets: terminology

Ys ⊂ E

Fπ
S

Wπ
E

Rk : total space
E : physical space

Fπ : internal space
Wπ : window
S : strip

Ys = πE{n + s ∈ Zk : π∗(n + s) ∈ W} = π(S ∩ (Zk + s)).



Example: 2 to 1 cut and project set

I Consider the subspace E of R2 generated by the vector(
1√
5−1
2

)
,

I Fπ = E⊥, and Wπ is the image under π∗ of the vertical
interval

{(0, x2) : 2−
√

5 ≤ x2 < (3−
√

5)/2} ⊆ R2.



Fibonacci tiling
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Example: 5 to 2 cut and project set

I Consider the subspace E of R5 generated by the columns
of the matrix 

1 0
cos(2π/5) sin(2π/5)
cos(4π/5) sin(4π/5)
cos(6π/5) sin(6π/5)
cos(8π/5) sin(8π/5)

 ,

I Fπ chosen appropriately, andWπ the canonical window,
which is the image under π∗ of the unit cube in R5.



Penrose tiling



What we will always assume

(i) Wπ is bounded and has nonempty interior, and the closure
ofWπ equals the closure of its interior

(ii) π|Zk is injective

(iii) s /∈ (Zk + ∂S) (Ys is nonsingular)

(iv) E can be parametrized as

E = {(x1, . . . , xd ,L1(x), . . . ,Lk−d (x)) : x ∈ Rd}



What we will usually assume

(v) E + Zk is dense in Rk (E acts minimally on Tk )

(vi) If p + Y = Y then p = 0 (Y is aperiodic)

Remark: Neither the truth of condition (v) nor that of (vi) implies
the other.



One consequence

Assumptions (i)+(v) guarantee that Y is a Delone set:

I uniformly discrete: ∃r > 0 such that, for any y ∈ Y ,

Y ∩ Br (y) = {y},

I relatively dense: ∃R > 0 such that, for any x ∈ E ,

Y ∩ BR(x) 6= ∅.



Reference subspace

As a reference point, when allowing E to vary, we also make
use of the fixed (k − d)-dimensional subspace Fρ of Rk defined
by

Fρ = {(0, . . . ,0, y) : y ∈ Rk−d}

and we let ρ : Rk → E and ρ∗ : Rk → Fρ be the projections onto
E and Fρ with respect to the decomposition

Rk = E + Fρ.

We set
W = ρ∗(Wπ),

and we also refer to this set as the window.



Two special types of windows

I The cubical window,

W =

{
k∑

i=d+1

tiei : 0 ≤ ti < 1

}
.

I The canonical window,

W = ρ∗

({
k∑

i=1

tiei : 0 ≤ ti < 1

})
.

We say that Y is a cubical (resp. canonical) cut and project
set if it is nonsingular, minimal, and aperiodic, and ifW is a
cubical (resp. canonical) window.



§2 Patches, complexity, and repetitivity



Two types of patches

I Let Ω ⊆ E be a bounded convex set with 0 in its interior.

I For each y ∈ Y and r > 0, the type 1 patch of size r at y
is

P1(y , r) = Y ∩ (y + rΩ).

I Writing ỹ for the point in S ∩ (Zk + s) with π(ỹ) = y , we
define the type 2 patch of size r at y of size r at y by

P2(y , r) := {y ′ ∈ Y : ρ(ỹ ′ − ỹ) ∈ rΩ}.



Jamie Walton’s picture
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Example: Type 1 patches for the Fibonacci tiling
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Differences between type 1 and type 2 patches

I SinceW is bounded, the type 1 and type 2 patches of size
r at y differ at most within a (fixed) constant neighborhood
of the boundary of y + rΩ.

I Type 1 patches are more geometric, but type 2 patches are
substantially easier to work with. So the strategy is to
prove results about type 2 patches, and transfer them to
results about type 1 patches.



Equivalence classes and complexity

I For i = 1,2, r > 0, and y1, y2 ∈ Y , we say that P1(y1, r)
and P1(y2, r) are equivalent if

Pi(y1, r) = Pi(y2, r) + y1 − y2.

Denote the equivalence class of Pi(y , r) by Pi(y , r).

I For i = 1,2, the complexity function pi : [0,∞)→ N is
defined by taking pi(r) to be the number of equivalence
classes of patches of type i of size r .



Observations about the complexity function

A couple of things to note:

I The number of equivalence classes of size r is always
finite (Y has finite local complexity).

I If E acts minimally on Tk then pi(r) does not depend on
the (nonsingular) choice of s.



Repetitivity

I Cut and project sets satisfying our basic conditions are
repetitive: for all y ∈ Y , r ≥ 0, there is an R > 0 such that
every ball BR(x) ⊆ E contains a point y ′ ∈ Y with

Pi(y ′, r) ∈ Pi(y , r).

I For i = 1,2 define the repetitivity function
Ri : [0,∞)→ R: Ri(r) is the smallest real number with the
property that every ball of radius Ri(r) in E contains the
distinguished point of a patch from every equivalence class
of type i patches of size r .

I We say that Y is linearly repetitive (LR) if there exists a
constant C > 0 such that, for all r ≥ 1,

Ri(r) ≤ Cr .



LR cubical cut and project sets

Theorem (H., Koivusalo, Walton): A k to d cubical cut and
project set defined by linear forms {Li}k−d

i=1 is LR if and only if
(LR1) The sum of the ranks of the kernels of the maps

Li : Zd → R/Z defined by

Li(n) = Li(n) mod 1

is equal to d(k − d − 1), and

(LR2) Each Li is relatively badly approximable.



§3 Dynamical coding of patches



Patterns, lifted patterns, and their projections to F
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Singular and regular points

There is a natural action of Zk on Fρ, given by

n.w = ρ∗(n) + w = w + (0,n2 − L(n1)),

for n = (n1,n2) ∈ Zk = Zd × Zk−d and w ∈ Fρ. For each r ≥ 0
we define the r -singular points of type 1 by

sing1(r) :=W ∩
(

(−π−1(rΩ) ∩ Zk ).∂W
)
,

and, similarly, the r -singular points of type 2 by

sing2(r) :=W ∩
(

(−ρ−1(rΩ) ∩ Zk ).∂W
)
.

For i = 1 or 2 we define the r -nonsingular points of type i by

nsingi(r) :=W \ singi(r).



Singular and regular points

Ω



Singular and regular points
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Correspondence with patterns, part 1

Lemma: Let i = 1 or 2, suppose that E acts minimally on Tk ,
and suppose that Y = Ys is nonsingular. Suppose that U is any
connected component of nsingi(r). Then for any points
y , y ′ ∈ Y ,

if ρ∗(ỹ), ρ∗(ỹ ′) ∈ U then Pi(y , r) = Pi(y ′, r).

Remark: The reverse implication is not true, in general.



Proof of lemma

For each y ∈ Y , let y∗ = ρ∗(ỹ) ∈ W. The point y∗ determines
the pattern around y , as follows. Each point y ′ ∈ Y lifts to a
point ỹ ′ = ỹ + n. But such a point is in S if and only if
π∗(ỹ ′) = n.y∗ lies inW. As we vary y∗, the pattern around y
can only change when some n.y∗ passes through ∂W, that is
when y∗ passes from one connected component of nsingi(r) to
another. The only difference between i = 1 and i = 2 is the set
of n’s being considered. In both cases, each connected
component of nsingi(r) corresponds to a single equivalence
class of patches.



Correspondence with patterns, part 2

Lemma: Suppose that E acts minimally on Tk , that Y is
non-singular, and thatW is a parallelotope generated by
integer vectors. Then for every equivalence class P2 = P2(y , r)
of type 2 patches, there is a unique connected component U of
nsing2(r) with the property that, for any y ′ ∈ Y ,

P2(y ′, r) = P2(y , r) if and only if ρ∗(ỹ ′) ∈ U.

Remark: The conclusion of the Lemma is not true, in general,
for type 1 patches.



Proof of lemma

Suppose that y1 and y2 ∈ Y , and that P2(y1, r) is equivalent to
P2(y2, r). Imagine varying y∗ in a straight line from y∗1 to y∗2 . In
moving y∗ from one connected component to another, the
patch P2(y , r) gains and/or loses points whenever y∗ crosses
from one component to another. We will show that none of the
points of P2(y1, r) may be removed in going from y∗1 to y∗2 , and
that no points may be added without removing other points.
Combining these observations, no points can be added or
removed, so y∗1 and y∗2 must lie in the same component.



Proof of lemma

No points may be removed: W is convex. Thus, for each n for
which π(ỹi + n) is in P2(yi , r), the set of points y∗ satisfying
n.y∗ ∈ W is convex. Since n.y∗1 and n.y∗2 are inW, all points on
the line segment connecting them must also be inW. Thus all
points y∗ on the line segment correspond to patches that
contain a translate of P2(yi , r).

No points may be added: W is a parallelotope generated by
integer vectors, after possibly modifying a subset of its
boundary it is a fundamental domain for a sublattice of Zk ∩ Fρ,
of some index I. This implies that for each n1 ∈ Zd , and each ỹ ,
there are exactly I points n2 ∈ Zk−d such that ỹ + (n1,n2) ∈ S.
In other words, as we cross a boundary between connected
components, a point is removed from P2(y , r) for each point
added. But, we have already shown that this can’t happen.



Correspondence with patterns, part 3

Lemma: With notation as above, suppose thatW is cubical and
that (αij)

d
j=1 ∈ Bd ,1 for each 1 ≤ i ≤ k − d . Then there exist

constants c1, c2 > 0 such that, for all r > 0, every element
connected component of nsing1(r) is a union of at most c1
connected components of nsing2(r + c2).



Correspondence with patterns, part 4

Open problem: Give an example of a cut and project set
satisfying the hypotheses of the previous lemma, but without
the badly approximable hypothesis, for which there is no
uniform bound on the number of connected components
corresponding to each equivalence class of type 1 patches.


