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Motivation

In 1950, R. Salem asked the following question related to
Fourier/Harmonic analysis:

Does there exist a sequence of εn ∈ ±1 such that

sup
θ∈R

∣∣∣∣∣∑
n<N

εne(nθ)

∣∣∣∣∣ ≤ C
√

N,

for any positive integer N?

H. S. Shapiro and W. Rudin answered in the affirmative in 1951
and 1959 respectively.
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Different representations of the Rudin–Shapiro
sequence

rn := (−1)e2;11(n), where e2;11(n) counts the number of (possibly
overlapping) occurrences of the block 11 in the binary
representation of n.

Example

02 = 0, e2;11(0) = 0, r0 = +1;
12 = 1, e2;11(1) = 0, r1 = +1;
22 = 10, e2;11(2) = 0, r2 = +1;
32 = 11, e2;11(3) = 1, r3 = −1.
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Dynamical representation

Iterating the following map:

%RS :

0 7→ 02
1 7→ 32
2 7→ 01
3 7→ 31

.

Primitivity: When there exists some k ∈ N such that every
aj is a subword of each %k (ai).
Legality: A finite word is called legal if it occurs as a
subword of %k (ai) for some 1 ≤ i ≤ n and some k ∈ N.
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What is known?

Let S(N) :=
∑

0≤n≤N rn.

Theorem (Allouche, Shallit)

S(N) =
√

NG(log4 N), where G is a certain function that
oscillates periodically between

√
3/3 and

√
2.

Proposition (Baake,Grimm)
The Rudin–Shapiro sequence has purely absolute continuous
diffraction spectrum.
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A Rudin–Shapiro-like sequence

(in)n≥0, defined by in = (−1)inv2(n), where inv2(n) counts the
number of inversions (occurrences of 10 as a scattered
subsequence) in the binary representation of n.

Example

02 = 0, inv2(0) = 0, i0 = +1;
12 = 1, inv2(1) = 0, i1 = +1;
22 = 10, inv2(2) = 1, i2 = −1;
122 = 1100, inv2(12) = 4, i12 = +1.
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Dynamical representation

Iterating the following map:

%RSL :

0 7→ 01
1 7→ 20
2 7→ 13
3 7→ 32

.

Recoding: Identify 0, 1 to 1 and 2,3 to -1.
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What is known?

Let S(N) :=
∑

0≤n≤N in.

Theorem (Yee, Lafrance, Rampersad)

S(N) =
√

NG(log4 N), where G is a certain function that
oscillates periodically between
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2.

in satisfy certain recurrence relations.

i2n = intn,

i2n+1 = in.
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What is known?

Proposition (Yee, Lafrance, Rampersad)

The sequence (in)n≥0 satisfies the following recurrence
relations:

i4n = in
i4n+1 = i2n

i4n+2 = −i2n

i4n+3 = in.
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What is not known?

Question 1.
What is the diffraction spectrum of this sequence?

Question 2. (Yee, Lafrance, Rampersad)

Does it satisfy supθ∈R
∣∣∑

n<N ine(nθ)
∣∣ ≤ C

√
N?
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Mathematical diffraction theory

Autocorrelation measure:

γ =
∑
m∈Z

η(m)δm

Autocorrelation coefficient:

η(m) = lim
N→∞

1
N

N−1∑
i=0

v(i)v(i + m)

Diffraction measure γ̂:
Fourier transform of the autocorrelation measure.

Theorem (Lebesgue decomposition theorem)

γ̂ = γ̂pp + γ̂sc + γ̂ac.
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Main results

Theorem (C., Grimm)
The Rudin–Shapiro-like sequence has purely singular
continuous spectrum.
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Main results

Theorem (C.,Grimm)

If a sequence satisfy supθ∈R
∣∣∑

n<N εne(nθ)
∣∣ ≤ C

√
N, then it

has purely absolute continuous diffraction spectrum.

Proof:
Step 1: Define the correlation function:

η(k) = lim
N→∞

1
N

∑
n<N

ε(n + k)ε(n),

where N ∈ Z and for every k ∈ N.
By Heglotz-Bochner theorem, η is the Fourier transform of a
position measure σ on [0,1), which we call a correlation
measure.
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proof

Step 2:

Theorem (Baake, Grimm)
Let % be a primitive substitution on a finite alphabet. Its hull
X(w) := {Si(w) : i ∈ Z} is then strictly ergodic under the
Z-action of the shift.

Strict ergodicity=unique ergodicity+minimality.
Step 3:

Proposition (Queffélec)
If σ is the unique correlation measure of the sequence γ, σ is
the weak-∗ limit point of the sequence of absolute continuous
measures RN ·m, where m is the Haar measure and
RN = 1

N

∣∣∑
n<N εne(nθ)

∣∣2.
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Last step of the proof

Denote ζN = RN ·m and suppose ζN converges weak-∗ to ζ.
Take a function g ∈ Cc(Rd), a continuous complex-valued
function with compact support.

ζN(g) =
∫

g · 1
N

∣∣∣∣∣∑
n<N

εne(nθ)

∣∣∣∣∣
2

dm,

We obtain ζ(g) ≤ C
∫

g dm, this implies absolute continuity.

Lax Chan (Joint work with Uwe Grimm) Diffraction spectrum of a Rudin–Shapiro-like sequence



Last step of the proof

Denote ζN = RN ·m and suppose ζN converges weak-∗ to ζ.
Take a function g ∈ Cc(Rd), a continuous complex-valued
function with compact support.

ζN(g) =
∫

g · 1
N

∣∣∣∣∣∑
n<N

εne(nθ)

∣∣∣∣∣
2

dm,

We obtain ζ(g) ≤ C
∫

g dm, this implies absolute continuity.

Lax Chan (Joint work with Uwe Grimm) Diffraction spectrum of a Rudin–Shapiro-like sequence



Last step of the proof

Denote ζN = RN ·m and suppose ζN converges weak-∗ to ζ.
Take a function g ∈ Cc(Rd), a continuous complex-valued
function with compact support.

ζN(g) =
∫

g · 1
N

∣∣∣∣∣∑
n<N

εne(nθ)

∣∣∣∣∣
2

dm,

We obtain ζ(g) ≤ C
∫

g dm, this implies absolute continuity.

Lax Chan (Joint work with Uwe Grimm) Diffraction spectrum of a Rudin–Shapiro-like sequence



Thank you for your
attention!
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