Diffraction spectrum of a Rudin–Shapiro-like sequence

Lax Chan (Joint work with Uwe Grimm)

The Open University, UK

Transversal aspects of tilings
June 2016

Motivation

In 1950, R. Salem asked the following question related to Fourier/Harmonic analysis:

Does there exist a sequence of $\epsilon_n \in \pm 1$ such that

$$\sup_{\theta \in \mathbb{R}} \left| \sum_{n < N} \epsilon_n e(n\theta) \right| \leq C \sqrt{N},$$

for any positive integer N?

H. S. Shapiro and W. Rudin answered in the affirmative in 1951 and 1959 respectively.

Motivation

In 1950, R. Salem asked the following question related to Fourier/Harmonic analysis:

Does there exist a sequence of $\epsilon_n \in \pm 1$ such that

$$\sup_{\theta \in \mathbb{R}} \left| \sum_{n < N} \epsilon_n e(n\theta) \right| \leq C\sqrt{N},$$

for any positive integer N?

H. S. Shapiro and W. Rudin answered in the affirmative in 1951 and 1959 respectively.

Motivation

In 1950, R. Salem asked the following question related to Fourier/Harmonic analysis:

Does there exist a sequence of $\epsilon_n \in \pm 1$ such that

$$\sup_{\theta \in \mathbb{R}} \left| \sum_{n < N} \epsilon_n e(n\theta) \right| \leq C \sqrt{N},$$

for any positive integer N?

H. S. Shapiro and W. Rudin answered in the affirmative in 1951 and 1959 respectively.

Different representations of the Rudin–Shapiro sequence

 $r_n := (-1)^{e_{2;11}(n)}$, where $e_{2;11}(n)$ counts the number of (possibly overlapping) occurrences of the block 11 in the binary representation of n.

```
Example

• 0_2 = 0, e_{2;11}(0) = 0, r_0 = +1;

• 1_2 = 1, e_{2;11}(1) = 0, r_1 = +1;

• 2_2 = 10, e_{2;11}(2) = 0, r_2 = +1;

• 3_2 = 11, e_{2;11}(3) = 1, r_3 = -1.
```

Different representations of the Rudin–Shapiro sequence

 $r_n := (-1)^{e_{2;11}(n)}$, where $e_{2;11}(n)$ counts the number of (possibly overlapping) occurrences of the block 11 in the binary representation of n.

Example

- $0_2 = 0$, $e_{2:11}(0) = 0$, $r_0 = +1$;
- $1_2 = 1$, $e_{2:11}(1) = 0$, $r_1 = +1$;
- $2_2 = 10$, $e_{2:11}(2) = 0$, $r_2 = +1$;
- $3_2 = 11$, $e_{2:11}(3) = 1$, $r_3 = -1$.

Dynamical representation

Iterating the following map:

$$\begin{array}{c} 0\mapsto 02\\ 1\mapsto 32\\ 2\mapsto 01\\ 3\mapsto 31 \end{array}.$$

- Primitivity: When there exists some $k \in \mathbb{N}$ such that every a_i is a subword of each $\varrho^k(a_i)$.
- Legality: A finite word is called *legal* if it occurs as a subword of $\varrho^k(a_i)$ for some $1 \le i \le n$ and some $k \in \mathbb{N}$

Dynamical representation

Iterating the following map:

$$\begin{array}{c} 0\mapsto 02\\ 1\mapsto 32\\ 2\mapsto 01\\ 3\mapsto 31 \end{array}.$$

- Primitivity: When there exists some $k \in \mathbb{N}$ such that every a_i is a subword of each $\varrho^k(a_i)$.
- Legality: A finite word is called *legal* if it occurs as a subword of $\varrho^k(a_i)$ for some $1 \le i \le n$ and some $k \in \mathbb{N}$.

Let
$$S(N) := \sum_{0 \le n \le N} r_n$$
.

Theorem (Allouche, Shallit)

 $S(N) = \sqrt{N}G(\log_4 N)$, where G is a certain function that oscillates periodically between $\sqrt{3}/3$ and $\sqrt{2}$.

Proposition (Baake, Grimm)

The Rudin–Shapiro sequence has purely absolute continuous diffraction spectrum.

Let
$$S(N) := \sum_{0 \le n \le N} r_n$$
.

Theorem (Allouche, Shallit)

 $S(N) = \sqrt{N}G(\log_4 N)$, where G is a certain function that oscillates periodically between $\sqrt{3}/3$ and $\sqrt{2}$.

Proposition (Baake, Grimm)

The Rudin–Shapiro sequence has purely absolute continuous diffraction spectrum.

A Rudin-Shapiro-like sequence

 $(i_n)_{n\geq 0}$, defined by $i_n=(-1)^{\mathrm{inv_2}(n)}$, where $inv_2(n)$ counts the number of inversions (occurrences of 10 as a scattered subsequence) in the binary representation of n.

```
Example
```

- $0_2 = 0$, $i_{0} = +1$;
- $1_2 = 1$, $inv_2(1) = 0$, $i_1 = +1$;
- $2_2 = 10$, $inv_2(2) = 1$, $i_2 = -1$;
- $12_2 = 1100$, $inv_2(12) = 4$, $i_{12} = +1$.

A Rudin-Shapiro-like sequence

 $(i_n)_{n\geq 0}$, defined by $i_n=(-1)^{\mathrm{inv}_2(n)}$, where $inv_2(n)$ counts the number of inversions (occurrences of 10 as a scattered subsequence) in the binary representation of n.

Example

- $0_2 = 0$, $i_{0} = 0$, $i_{0} = +1$;
- $1_2 = 1$, $inv_2(1) = 0$, $i_1 = +1$;
- $2_2 = 10$, $inv_2(2) = 1$, $i_2 = -1$;
- $12_2 = 1100$, $inv_2(12) = 4$, $i_{12} = +1$.

Dynamical representation

Iterating the following map:

$$arrho_{\mathsf{RSL}}:egin{array}{c} 0\mapsto 01\ 1\mapsto 20\ 2\mapsto 13\ 3\mapsto 32 \end{array}.$$

Recoding: Identify 0, 1 to 1 and 2,3 to -1.

Dynamical representation

Iterating the following map:

$$arrho_{\mathsf{RSL}}: egin{array}{c} 0 \mapsto 01 \ 1 \mapsto 20 \ 2 \mapsto 13 \ 3 \mapsto 32 \end{array}.$$

Recoding: Identify 0, 1 to 1 and 2,3 to -1.

Let
$$S(N) := \sum_{0 \le n \le N} i_n$$
.

Theorem (Yee, Lafrance, Rampersad)

 $S(N) = \sqrt{N}G(\log_4 N)$, where G is a certain function that oscillates periodically between $\sqrt{3}/3$ and $\sqrt{2}$.

i_n satisfy certain recurrence relations.

$$i_{2n} = i_n t_n$$

$$i_{2n+1}=i_n.$$

Let
$$S(N) := \sum_{0 \le n \le N} i_n$$
.

Theorem (Yee, Lafrance, Rampersad)

 $S(N) = \sqrt{N}G(\log_4 N)$, where G is a certain function that oscillates periodically between $\sqrt{3}/3$ and $\sqrt{2}$.

 i_n satisfy certain recurrence relations.

$$i_{2n}=i_nt_n$$

$$i_{2n+1}=i_n$$
.

Proposition (Yee, Lafrance, Rampersad)

The sequence $(i_n)_{n\geq 0}$ satisfies the following recurrence relations:

$$i_{4n} = i_n$$

 $i_{4n+1} = i_{2n}$
 $i_{4n+2} = -i_{2n}$
 $i_{4n+3} = i_n$

What is not known?

Question 1.

What is the diffraction spectrum of this sequence?

Question 2. (Yee, Lafrance, Rampersad)

Does it satisfy $\sup_{\theta \in \mathbb{R}} \left| \sum_{n \le N} i_n e(n\theta) \right| \le C \sqrt{N}$?

What is not known?

Question 1.

What is the diffraction spectrum of this sequence?

Question 2. (Yee, Lafrance, Rampersad)

Does it satisfy $\sup_{\theta \in \mathbb{R}} |\sum_{n < N} i_n e(n\theta)| \le C\sqrt{N}$?

Mathematical diffraction theory

Autocorrelation measure:

$$\gamma = \sum_{m \in \mathbb{Z}} \eta(m) \delta_m$$

Autocorrelation coefficient:

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v(i)v(i+m)$$

Diffraction measure $\hat{\gamma}$:

Fourier transform of the autocorrelation measure.

Theorem (Lebesgue decomposition theorem)

$$\widehat{\gamma} = \widehat{\gamma_{\rm pp}} + \widehat{\gamma_{\rm sc}} + \widehat{\gamma_{\rm ac}}$$

Mathematical diffraction theory

Autocorrelation measure:

$$\gamma = \sum_{m \in \mathbb{Z}} \eta(m) \delta_m$$

Autocorrelation coefficient:

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v(i)v(i+m)$$

Diffraction measure $\hat{\gamma}$:

Fourier transform of the autocorrelation measure.

Theorem (Lebesgue decomposition theorem)

$$\widehat{\gamma} = \widehat{\gamma_{\rm pp}} + \widehat{\gamma_{\rm sc}} + \widehat{\gamma_{\rm ac}}.$$

Theorem (C., Grimm)

The Rudin–Shapiro-like sequence has purely singular continuous spectrum.

Theorem (C., Grimm)

The Rudin–Shapiro-like sequence has purely singular continuous spectrum.

Theorem (C., Grimm)

The Rudin–Shapiro-like sequence has purely singular continuous spectrum.

Theorem (C.,Grimm)

If a sequence satisfy $\sup_{\theta \in \mathbb{R}} \left| \sum_{n < N} \epsilon_n e(n\theta) \right| \leq C \sqrt{N}$, then it has purely absolute continuous diffraction spectrum.

Proof:

Step 1: Define the correlation function:

$$\eta(k) = \lim_{N \to \infty} \frac{1}{N} \sum_{n < N} \epsilon(n+k)\epsilon(n),$$

where $N \in \mathbb{Z}$ and for every $k \in \mathbb{N}$.

By Heglotz-Bochner theorem, η is the Fourier transform of a position measure σ on [0, 1), which we call a correlation measure.

Theorem (C.,Grimm)

If a sequence satisfy $\sup_{\theta \in \mathbb{R}} \left| \sum_{n < N} \epsilon_n e(n\theta) \right| \leq C \sqrt{N}$, then it has purely absolute continuous diffraction spectrum.

Proof:

Step 1: Define the correlation function:

$$\eta(k) = \lim_{N \to \infty} \frac{1}{N} \sum_{n < N} \epsilon(n+k) \epsilon(n),$$

where $N \in \mathbb{Z}$ and for every $k \in \mathbb{N}$.

By Heglotz-Bochner theorem, η is the Fourier transform of a position measure σ on [0, 1), which we call a correlation measure.

proof

Step 2:

Theorem (Baake, Grimm)

Let ϱ be a primitive substitution on a finite alphabet. Its hull $\mathbf{X}(w) := \overline{\{S^i(w) : i \in \mathbb{Z}\}}$ is then *strictly ergodic* under the \mathbb{Z} -action of the shift.

Strict ergodicity=unique ergodicity+minimality.

Step 3:

Proposition (Queffélec)

If σ is the unique correlation measure of the sequence γ , σ is the weak-* limit point of the sequence of absolute continuous measures $R_N \cdot m$, where m is the Haar measure and $R_N = \frac{1}{N} \left| \sum_{n < N} \epsilon_n e(n\theta) \right|^2$.

proof

Step 2:

Theorem (Baake, Grimm)

Let ϱ be a primitive substitution on a finite alphabet. Its hull $\mathbf{X}(w) := \overline{\{S^i(w) : i \in \mathbb{Z}\}}$ is then *strictly ergodic* under the \mathbb{Z} -action of the shift.

Strict ergodicity=unique ergodicity+minimality. Step 3:

Proposition (Queffélec)

If σ is the unique correlation measure of the sequence γ , σ is the weak-* limit point of the sequence of absolute continuous measures $R_N \cdot m$, where m is the Haar measure and $R_N = \frac{1}{N} \left| \sum_{n < N} \epsilon_n e(n\theta) \right|^2$.

Last step of the proof

Denote $\zeta_N = R_N \cdot m$ and suppose ζ_N converges weak-* to ζ .

Take a function $g \in C_c(\mathbb{R}^d)$, a continuous complex-valued function with compact support.

$$\zeta_N(g) = \int g \cdot \frac{1}{N} \left| \sum_{n < N} \epsilon_n e(n\theta) \right|^2 dm,$$

We obtain $\zeta(g) \leq C \int g \ dm$, this implies absolute continuity

Last step of the proof

Denote $\zeta_N = R_N \cdot m$ and suppose ζ_N converges weak-* to ζ . Take a function $g \in C_c(\mathbb{R}^d)$, a continuous complex-valued function with compact support.

$$\zeta_N(g) = \int g \cdot \frac{1}{N} \left| \sum_{n \leq N} \epsilon_n e(n\theta) \right|^2 dm,$$

We obtain $\zeta(g) \leq C \int g \ dm$, this implies absolute continuity.

Last step of the proof

Denote $\zeta_N = R_N \cdot m$ and suppose ζ_N converges weak-* to ζ . Take a function $g \in C_c(\mathbb{R}^d)$, a continuous complex-valued function with compact support.

$$\zeta_N(g) = \int g \cdot \frac{1}{N} \left| \sum_{n \leq N} \epsilon_n e(n\theta) \right|^2 dm,$$

We obtain $\zeta(g) \leq C \int g \ dm$, this implies absolute continuity.

Thank you for your attention!