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1. Curie-Weiss model with respect to Ergodic theory

1.1. Different but close settings.

1.1.1. The Curie-Weiss model. Probabilistic setting 1. We consider the sets Λ =
{−1,+1} and Σ := ΛN. A point x in Σ is a sequence x0, x1, . . . (also called an
infinite word) where the xi are in Λ. Most of the times we shall use the notation
x = x0x1x2 . . .. A xi ∈ Λ can either be called a letter, or a digit or a symbol.
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2 RENAUD LEPLAIDEUR

If ω0 . . . ωn−1 is a finite word, we set

(1) Hn(ω) := − 1

2n

n−1∑
i,j=0

ωjωi.

It is called the Curie-Weiss Hamiltonian. The empirical magnetization for ω is

mn(ω) :=
1

n

n−1∑
j=0

ωj. Then we have Hn(ω) = −n
2
(mn(ω))2.

We denote by P := ρ⊗N the product measure on Σ2, where ρ is the uniform measure
on {−1, 1}, i.e. ρ({1}) = ρ({−1}) = 1

2
, and we define the probabilistic Gibbs measure

(PGM for short) µn,β on Σ2 by

(2) µn,β(dω) :=
e−β.Hn(ω)

Zn,β
P(dω),

where Zn,β is the normalization factor

Zn,β =
1

2n

∑
ω′, |ω′|=n

e−β.Hn(ω′).

Note that µn,β can also be viewed as a probability defined on Λn.

1.1.2. Ergodic and Dynamical settings. The shift map σ is defined on Σ by

σ(x0x1x2 . . .) = x1x2 . . . .

The distance between two points x = x0x1 . . . and y = y0y1 . . . is given by

d(x, y) =
1

2min{n, xn 6=yn}
·

We sometimes represent this distance graphically as follows:

x0 = y0

�
�

@
@

n− 1

xn−1 = yn−1

y

x

Figure 1. The sequence x and y coincide for digits 0 up to n−1 and
then split.

A finite string of symbols x0 . . . xn−1 is also called a word, of length n. For a word
w, its length is |w|. A cylinder (of length n) is denoted by [x0 . . . xn−1]. It is the set
of points y such that yi = xi for i = 0, . . . n− 1.
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For φ : Σ→ R continuous and β > 0, the pressure function is defined by

(3) P(β.φ) := sup
µ

{
hµ + β

∫
φ dµ

}
,

where the supremum is taken among the setMσ(Σ2) of σ-invariant probabilities on
Σ and hµ is the Kolmogorov-Sinäı entropy of µ. The real parameter β is assumed
to be positive because it represents the inverse of the temperature in statistical
mechanics. It is known that the supremum is actually a maximum and any measure
for which the maximum is attained in (3) is called an equilibrium state for β.φ. We
refer the reader to [3, 19] for basic notions on thermodynamic formalism in ergodic
theory.

If φ is Lipschitz continuous then the Ruelle-Griffith theorem (see [11]) states that
for every β, there is a unique equilibrium state for β.φ, which is denoted by µ̃β if the
choice of φ is clear. The measure µ̃β is ergodic and it shall be called the dynamical
Gibbs measure (DGM for short). It satisfies for every x = x0x1 . . . and for every n

(4) e−Cβ ≤ µ̃β([x0 . . . xn−1])

eSn(φ)(x)−nP(β.φ)
≤ eCβ ,

where Cβ is a positive real number depending only on β and φ (but not on x or n),
and Sn(φ) stands for φ+ φ ◦ σ + . . .+ φ ◦ σn−1.

1.1.3. Relations between these definitions of Gibbs measures. Our main question is
to understand relations/differences between these two definitions of Gibbs measures.
As we pointed out above, µn,β lives in Λn whereas µ̃β lives in Σ = ΛN.

If Pn, P are probability measures on the Borel sets of a metric space S, we say that
Pn converges weakly to P if

∫
S
f dPn →

∫
S
f dP for each f in the class Cb(S) of

bounded, continuous real functions f on S. In this case we write Pn
w−→

n→+∞
P .

Then, our first result concerns the weak convergence of the measures µnβ.

Theorem 1. Weak convergence

Let ξβ be the unique point in [0, 1] which realizes the maximum for ϕI(x) := log(cosh(β.x))−
β
2
x2. Let µ̃+

b and µ̃−b be the dynamical Gibbs measures for b.11[+1] and b.11[−1] respec-
tively. Then

(5) µn,β
w−→

n→+∞


µ̃0 if β ≤ 1,

1

2

[
µ̃+

2β.ξβ
+ µ̃−2β.ξβ

]
if β > 1.

Remark 1. Actually µn,β converges towards 1
2

[
µ̃+

2β.ξβ
+ µ̃−2β.ξβ

]
for every β > 0 since

we shall see that for β ≤ 1 we have ξβ = 0, and it is clear that µ̃+
0 = µ̃−0 = µ̃0 = ρ⊗N.
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We refer to [8], sections IV.4 and V.9, for discussion of the Curie-Weiss model and
historical references. By using this theorem, Orey ([16], Corollary 1.2) proved by a
nice simple probabilistic argument the weak convergence of µn,β towards an explicit
atomic measure.

Remark 2. It is said that there is a phase transition at β = 1.

1.2. Proof of Theorem 1. To prove the convergence of µn,β towards µ, it is enough
to show that for every cylinder C,

(6) lim
n→∞

µn,β(C) = µ(C).

First we justify that ϕI admits a unique maximum in [0, 1] and use this point to get
convergence for µn,β(C), where C is any cylinder. In the second subsection we show
that this limit is equal to the right convex combinations of DGM’s.

1.2.1. The auxiliary function ϕI and limit for µn,β. We recall that we set ϕI(x) :=

log(cosh(βx))− β
2
x2.

Lemma 1.1. Maxima for ϕI

The function ϕI attains its maximum on R+ at a unique point ξβ which is the unique
positive solution of the equation tanh(βx) = x. If β ≤ 1, then ξβ = 0.

Proof. Note that ϕ′I(x) = β (tanh(β.x)− x) and ϕ′′I (x) = β.(β − 1− β. tanh2(β.x)).
If β ≤ 1, ϕ′′I is non-positive, thus ϕ′I decreases and ϕ′I(0) = 0 yields that ϕI is a
decreasing function. The maximum is then attained for ξβ = 0.

If β > 1, then ϕ′′I is positive and then negative, which yields that ϕ′I is first an
increasing and then a decreasing function. Note that ϕ′I(0) = 0 and ϕ′I(1) < 0,
which shows that ϕ′I is positive on some interval ]0, ξβ[ with 0 < ξβ < 1 and negative
on ]ξβ,+∞[. Consequently, ϕI reaches its maximal value on R at the points ±ξβ
defined by

�(7) tanh(β.ξβ) = ξβ.

Now we are ready to compute the limit of a fixed cylinder. Let ω = ω0 . . . ωp−1 be a

finite word of length p. We denote by Sp(ω) =
∑p−1

i=0 ωi the sum of the p digits of ω.

Lemma 1.2. Limit of the measure of a fixed cylinder

(8) lim
n→∞

µn,β([ω0 . . . ωp−1]) =


1

2p
if β ≤ 1,

1

2
(f(ξβ) + f(−ξβ)) if β > 1,

where

f(y) =
eβySp(ω)

(eβy + e−βy)p
.
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Proof. For big n,

[ω] =
⊔

[ω0 . . . ωp−1αp . . . αn−1] =
⊔

α, |α|=n−p

[ωα],

and

µn,β([ω]) =
∑

α, |α|=n−p

µn,β([ωα]) =

∑
α, |α|=n−p

e−βHn(ωα)

∑
α, |α|=n

e−βHn(α)
.

We set s :=
∑p−1

i=0 ωi, S(α) :=
∑n−1

i=p αi, and Sn(ωα) := s+ S(α). Then,

Hn(ωα) = − 1

2n
(s+ S(α))2.

We use the equality

ea
2

=
1√
2π

∫ +∞

−∞
e−

x2

2
+
√

2ax dx,

sometimes called the Hubbard-Stratonovich transformation ([12],[20]), to compute
the following.∑

α, |α|=n−p

e
β
2n
S2
n(ωα) =

1√
2π

∫ +∞

−∞
e−

x2

2

∑
α

e
√

β
n
xSn(ωα) dx

=
1√
2π

∫ +∞

−∞
e−

x2

2
+
√

β
n
xs
∑
α

e
√

β
n
xS(α) dx

=
1√
2π

∫ +∞

−∞
e−

x2

2
+
√

β
n
xs2n−p

(
cosh

(√
β

n
x

))n−p

dx

=
2n−p√

2π

∫ +∞

−∞
e
−x

2

2
+
√

β
n
xs+(n−p) log cosh

(√
β
n
x
)
dx.

In this last integral we make the change of variable β.y :=

√
β

n
x, and as

exp (β.s.y − p log cosh (β.y)) =
2peβySp(ω)

(eβy + e−βy)p

we obtain

(9)
∑

α, |α|=n−p

e
β
2n
S2
n(ωα) =

2n
√
nβ√

2π

∫ +∞

−∞
enϕI(y)f(y) dy.

Similarly, p = s = 0 yields∑
α, |α|=n

e
β
2n
S2
n(α) =

2n
√
nβ√

2π

∫ +∞

−∞
enϕI(y) dy,
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therefore we obtain that

(10) µn,β([ω]) =

∫ +∞
−∞ enϕI(y)f(y) dy∫ +∞
−∞ enϕI(y) dy

.

We recall that the Laplace method shows that if ϕ′I vanishes on a single point ξ in
the interior of the interval I and if ϕ′′I (ξ) < 0 and f(ξ) 6= 0, then∫

I

enϕI(y)f(y)dy ∼n→∞
√

2π√
|ϕ′′I (ξ)|

enϕI(ξ)f(ξ)n−1/2.

If β < 1: we may consider I = R and ξ = ξβ = 0. We thus get ϕ′′I (0)) = β(β − 1),
f(0) = 1

2p
, and

µn,β([ω]) ∼n→∞
f(0)

1
=

1

2p
.

If β = 1: in this case ϕ′′I (0)) = 0 but the Laplace method still works if we consider

the least integer k such that ϕ
(k)
I (0) 6= 0. We do not need to calculate it because we

have as in the preceding case that∫
R
enϕI(y)f(y)dy ∼n→∞

1

2p

∫
R
enϕI(y)dy,

therefore we still have µn,β([ω]) ∼n→+∞
1

2p
.

If β > 1: we may consider two intervals R− and R+ and ξ = ±ξβ. Then we get

∫ +∞

−∞
enϕI(y)f(y)dy ∼n→∞

√
2π√

|ϕ′′I (ξβ)|
enϕI(ξβ) (f(ξβ) + f(−ξβ))n−1/2,

which yields

µn,β([ω]) ∼n→∞
f(ξβ) + f(−ξβ)

2
. �

1.2.2. Identification of the limit as a convex combination of DGM’s. First, we point
out that Lemma 1.2 yields lim

n→+∞
µn,β = µ̃0 if β ≤ 1. We thus have to deal with the

case β > 1.

Let us first compute the dynamical Gibbs measures µ̃+
b and µ̃−b . We denote by

Lp,+(ω) :=
∑p−1

k=0 1ωk=1 the number of digits of ω which take the value 1, and similarly

Lp,−(ω) :=
∑p−1

k=0 1ωk=−1 is the number of digits which take the value −1.

Lemma 1.3. Computation for µ̃±b

(11) µ̃+
b ([ω]) =

ebLp,+(ω)

(eb + 1)p
and µ̃−b ([ω]) =

ebLp,−(ω)

(eb + 1)p
.
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Proof. The function b.11[+1] depends only on the zero coordinate. It is shown for
instance in Example 4.2.2 of [13] that in this case the supremum in (3) is attained
for the product measure Pp := ρ⊗Np , where p ∈ [0, 1], ρp = pδ1 + (1 − p)δ−1, and p
satisfies

−p log p− (1− p) log(1− p) + bp = sup
q∈[0,1]

(−q log q − (1− q) log(1− q) + bq) .

It is easy to show that p = eb

1+eb
, and then

µ̃+
b ([ω]) =

ebLp,+(ω)

(eb + 1)p
.

Exchanging the roles of +1 and −1 gives the equality

µ̃−b ([ω]) =
ebLp,−(ω)

(eb + 1)p
. �

We recall that Sp(ω) =
∑p−1

k=0 ωk = Lp,+(ω)−Lp,−(ω) = 2Lp,+(ω)−p = p−2Lp,−(ω).
Then

f(ξβ) =
eβξβSp(ω)

(eβξβ + e−βξβ)p

=
eβξβ(2Lp,+(ω)−p)

(eβξβ + e−β.ξβ)p

=
e2βξβLp,+(ω)

(e2βξβ + 1)p
.

Similarly we have f(−ξβ) =
e2βξβLp,−(ω)

(e2βξβ + 1)p
and replacing these values in (8) we get

lim
n→+∞

µn,β([ω]) =
1

2
(µ̃+

2β.ξβ
([ω]) + µ̃−2β.ξβ([ω])),

and the theorem is proved.

1.3. A more general result for the Curie-Weiss-Potts model. The Curie-
Weiss-Potts model will be for Λ = {θ1, . . . , θq} with q > 2. In that case we shall
write Σq instead of Σ.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word ω = ω0 · · ·ωn−1 by

(12) Hn(ω) := − 1

2n

n−1∑
i,j=0

11ωj=ωi .
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We define the vector Ln(ω) = (Ln,1(ω), · · · , Ln,q(ω)) where

Ln,k(ω) =
n−1∑
i=0

11ωi=θk

is the number of digits of ω which take the value θk, so that we can write

n−1∑
i,j=0

11ωj=ωi =

q∑
k=1

(
n−1∑
i=0

1ωi=θk

)2

= ‖Ln(ω)‖2,

where ‖ · ‖ stands for the euclidean norm on Rq.

We denote by P := ρ⊗N the product measure on Σq, where ρ is the uniform measure
on Λ, i.e. ρ = 1

q

∑q
k=1 δθk , and we define the probabilistic Gibbs measure µn,β on Σq

by

(13) µn,β(dω) :=
e−β.Hn(ω)

Zn,β
P(dω) =

e
β
2n
‖Ln(ω)‖2

Zn,β
P(dω),

where Zn,β is the normalization factor

Zn,β =
1

qn

∑
ω′, |ω′|=n

e
β
2n
‖Ln(ω′)‖2 .

Now we can state the analog of Theorem 1.

Theorem 2. Weak convergence for the CWP model

For 1 ≤ k ≤ q, b ∈ R, let µ̃kb be the dynamical Gibbs measure for b.11[θk]. Let

βc = 2(q−1) log(q−1)
q−2

. For 0 < β < βc set sβ = 0 and for β ≥ βc let sβ be the largest

solution of the equation

(14) s =
eβs − 1

eβs + q − 1
.

Then,

(15) µn,β
w−→

n→+∞



ρ⊗N if 0 < β < βc,

1

q

q∑
k=1

µ̃kβ.sβ if β > βc,

A µ̃1
0 +B

∑q
k=1 µ̃

k
βc.sβc

A+ qB
if β = βc,

with A =
(

1− βc
q(q−1)

) q−2
2

and B =
(

1− βc
q

) q−2
2

.

Remark 3. Actually µn,β converges towards 1
q

∑q
k=1 µ̃

k
β.sβ

for every β 6= βc since

sβ = 0 for β < βc, and it is clear that µ̃k0 = ρ⊗N for each 1 ≤ k ≤ q.
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We refer to [9] for discussion of the Curie-Weiss-Potts model and historical refer-
ences. Orey ([16], Theorem 4.4) mentions the weak convergence of µn,β towards an
explicit atomic measure, but he makes a mistake concerning the case β = βc, as
pointed out in [9].
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2. Construction of dynamical (local) equilibrium states

2.1. Classical theory.

2.1.1. the Transfer operator. We consider a fixed α-Hölder potential A : Σ→ R.

We recall that A : Σ→ R is said to be α-Hölder, 0 < α < 1, if there exists C > 0,
such that, for all x, y we have |A(x)− A(y) | ≤ C d(x, y)α.

For a fixed value α, we denote by Hα the set of α-Hölder functions A : Σ→ R. Hα

is a vector space.

For a fixed α, the norm we consider in the set Hα of α-Hölder potentials A is

||A||α = sup
x 6=y

|A(x)− A(y)|
d(x, y)α

+ sup
x∈Σ
|A(x)|.

For a fixed α, the vector space Hα is complete with the above norm.

Definition 2.1. We denote by LA : C0(Σ) → C0(Σ) the Transfer operator corre-
sponding to the potential A, which is given in the following way: for a given φ we
will get another function LA(φ) = ϕ, such that,

ϕ(x) =
∑

a, ax0∈A

eA(ax) φ(ax).

In another form

ϕ(x) = ϕ(x0x1 · · · ) =
∑

a,ax0∈A

eA(ax0x1x2,...) φ(ax0x1x2...).

The transfer operator is also called the Ruelle-Perron-Frobenius operator. It had
been introduced by Ruelle and extends in some sense the matrices with positive
entries. We remind that for such matrices, the Perron-Frobenius theorem gives
information on the spectrum.

It is immediate to check that LA acts on continuous functions. It also acts on
α-Hölder functions if A is α-Hölder.

Consequently the dual operator acts on measures:

L∗A : µ 7→ ν∫
ψ dν :=

∫
LA(ψ) dµ.

Theorem 3 (see [3]). Let λA be the spectral radius of LA. Then, λA is an eigenvalue
for LA and L∗A: there exists a probability measure νA such that

L∗A(νA) = λAνA.
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There exists a unique HA, up to the normalization

∫
HA dνA = 1, such that

LA(HA) = λAHA.

The measure defined by µA = HAνA is σ-invariant and is the unique equilibrium
state for A. The pressure satisfies P(1) = λA

This measure is actually a Gibbs measure: there exists CA > 0 such that for every
x = x0x1 . . . and for every n,

(16) e−CA ≤ µA([x0 . . . xn−1])

eSn(A)(x)−n log λA
≤ eCA .

These two inequalities yields that the free energy for µA is log λA. The left-side
inequality yields that for any other ergodic measure ν,

hν +

∫
Adν < log λA.

The same work can be done for β.A instead of A. Actually the proof of Theorem 3
and general results for perturbations of spectrum of operators yield that β 7→ P(β)
is locally analytic. One argument of connexness shows that it is globally analytic.

2.1.2. A complete and exact computation for one example. Let us now assume that
A depends on two coordinates, that is

A(x0x1x2 . . .) = A(x0, x1).

We denote by A(i, j) the value of A in the cylinder [ij], i, j ∈ {0, 1}. In this case,
the Transfer operator takes a simple form:

LA(φ)(x0x1x2 . . .) =
∑

a∈{0,1}

eA(ax0) φ(ax0x1x2 . . .) = eA(0,x0)φ(0x) + eA(1,x0)φ(1x).

Let M be the matrix will all positive entries given by Mi,j = eA(i,j).

Lemma 2.2. The spectral radius of LA is also the spectral radius of M .

Proof. Assume that φ is a function depending only on one coordinate, i.e.,

φ(x0x1x2 . . .) = φ(x0).
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Then, denote by abuse of notation φ the vector (φ(0), φ(1)). Then, for every j

LA(φ)(j) =
1∑
j=0

Mij.φ(i),

which can be written as LA(φ) = M∗.φ. This yields that the spectral radius λM of
M is lower or equal to λA.

We remind that the spectral radius is given by

λA := lim sup
n→+∞

1

n
log |||LnA|||, and |||LnA||| = sup

||ψ||=1

||Ln(ψ)||∞.

The operator LA is positive and this shows that for every n, |||LnA||| = ||LnA(11)||∞.
Now, 11 depends only on 1 coordinate, which then LnA(11) = Mn(11). This yields
λA ≤ λM . �

Theorem 4. (Perron-Frobenius) Let B = (bij) be a d × d matrix with positive
entries. Then, the spectral radius of B, say λ, is a simple dominated eigenvalue.
The associated eigenspace is generated by some “positive” vector u = (u1, · · · , ud)
with ui > 0.

By Theorem 4 there exists an eigenvector say ν = (ν0, ν1) with positive entries for
the matrix M associated to λA. We may assume ν0 + ν1 = 1.

Let us define the 2× 2 matrix PA = PA(i, j) with

PA(i, j) =
eA(i,j)νj
λAνi

.

Note that PA is a line stochastic matrix:

PA(0, 0) + PA(0, 1) = 1 = PA(1, 0) + PA(1, 1).

Theorem 4 applied to the adjoint matrix M∗ yields a left-eigenvector for M with
positive entries H = (h0, h1). Set µi = hi.νi and assume normalization µ0 + µ1 = 1.

µ.PA = µ

and µis the invariant measure associated to the Markov chain with transition matrix
PA. Moreover we get

µA([x0 . . . xn−1]) = µx0PA(x0, x1) . . . PA(xn−2, xn−1).

The exact computation yields µA([x0 . . . xn−1]) = hx0e
Sn(A)(x)−n log λA .νxn−1 . Since ν

and h have positive entries, this shows that µA is a Gibbs measure.

Things can be summarized as follows:
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Let M = (Mij) be the matrix with entries eA(i,j). Let
r = (r1, . . . rd) be the right-eigenvector associated to λ
with normalization

∑
ri = 1. Let l = (l1, . . . , ld) be

the left-eigenvector for λ with renormalization
∑
liri=1.

Then, r is the eigenmeasure νA and l is the density HA.
The Gibbs measure of the cylinder [i0 . . . in−1] is µA =
([i0 . . . in−1]) = li0e

Sn(A)(x)−n log λArin−1

Remark 4. Doing this with A := β.(11[±1]) one recovers the Dynamical Gibbs mea-
sures from Theorem 1.

2.1.3. Phase transition.

Definition 2.3. We say that there is a transition phase at β0 if the pressure function
P(β) is not analytic at β0. We say that it is a freezing phase transition if P(β) is
affine for every β > βc.

In case of a freezing phase transition, after the transition P(β) is of the form

P(β) = h+ β.a.

It is then easy to check that a satisfies: a = max

∫
Adµ. In ergodic theory, a

measure satisfying this last property is said to be A-maximizing. In Statistical
Mechanics it is a ground state. The quantity h is called the residual entropy. It
corresponds to the maximum of the Kolmogorov entropy among all A-maximizing
measures.

One question we are interested in is to know if we can get
freezing phase transition with support in a quasi-crystal
set after the transition.

Remark 5. It is noteworthy that the number of equilibrium state is “almost” inde-
pendent to the analyticity of the pressure function β 7→ P(β). There are examples
of systems with a phase transition despite uniqueness of the equilibrium state ( the
Manneville-Pomeau maps, see [21]). On the contrary, there are examples where the
pressure is analytic on some interval but there are finitely many different equilibrium
states (see [15]).

2.2. On the road to detect freezing phase transition.

2.2.1. Induced map. We consider a cylinder J = [wJ ] in Σ. For x in J , the first
return time is τ(x) = min{n ≥ 1, σn(x) ∈ J} ≤ +∞. Then we consider the first
return map F (x) := στ(x)(x). This map is well defined if τ(x) < +∞. The main
important point is that the inverse branches are well defined everywhere on J : if x
belongs to J and if x′ satisfies F (x′) = x, hence we can write x′ under the form

x′ = wx.



14 RENAUD LEPLAIDEUR

Then, for every y in J , y′ = wy satisfies F (y′) = y and τ(y′) = τ(x′) = |w|.

It is also well known that if µ̂ is a σ-invariant probability measure with µ̂(J) > 0,

then, the conditional measure µ :=
µ̂(. ∩ J)

µ̂(J)
is F -invariant. Conversely, if µ is

a F -invariant probability measure and

∫
τ dµ < +∞, then there exists a unique

σ-invariant probability µ̂ such that µ :=
µ̂(. ∩ J)

µ̂(J)
holds (see [6]).

At that stage we have two different dynamical systems: (Σ, σ) and (J, F ). The
question is to know if studying thermodynamic formalism for one system yields
information on the thermodynamic formalism for the other one. By the Abramov
formula (see [17] p. 257-258) we get

hµ̂(f) +

∫
Adµ̂ ≤ P with equality iff µ̂ = equil. state

m

hµ̂(f) +

∫
Adµ̂− P ≤ 0 with equality iff µ̂ = equil. state

m

µ̂(R)

(
hµ(F ) +

∫
Sτ(.)(A)− P .τ(.) dµ

)
≤ 0 with equality iff µ̂ = equil. state

m

hµ(F ) +

∫
Sτ(.)(A)− P .τ(.) dµ ≤ 0 with equality iff µ̂ = equil. state

This simple sequence of inequalities shows that the thermodynamic formalism for
(Σ, σ) and potential A is related to the thermodynamic formalism for (J, F ) and
Sτ(.)(A)(.).

As we have seen above, the thermodynamic quantities come from the spectrum of
the Transfer Operator.

2.2.2. Inducing scheme and local thermodynamic formalism. Let A : Σ → R be
some potential function and J = [wJ ] be a cylinder. Consider the first return map
to J , with return time τ(x) = min{n ≥ 1, σn(x) ∈ J}. Then we define, for each
β > 0 and Z ∈ R, an induced transfer operator by:

LZ,β(g)(x) =
∑
n∈N

∑
τ(y)=n
σn(y)=x

eβ.Sn(A)(y)−nZg(y)
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where SN(A)(y) =
N−1∑
k=0

A ◦ σk(y) and g is a continuous function from J to R.

For a given function A, it is a power series in e−Z .

Theorem 5 ([14]). We have with the previous notations:

• For every β ≥ 0, there exists a minimal Zc(β) ∈ R ∪ {−∞} such that for
every Z > Zc(β), LZ,β acts on C0(J). In particular, for every Z > Zc(β),
for every x ∈ J and for every g ∈ C0(J), LZ,β(g)(x) converges.
• P(β) ≥ Zc(β).
• Let λZ,β be the spectral radius for LZ,β and for Z > Zc(β). Then Z 7→ log λZ,β

is a decreasing function and we have three possible cases given by Figure 2.

Z

Zc(β)

log λZ,β Z

Zc(β)

log λZ,β

Z

Zc(β)

log λZ,β

Figure 2. The tree possible graphs for log λZ,β.

• If case 1 holds, then log λZ,β = 0 if and only if Z = P(β) and there is a unique
equilibrium state for β.A; it is a fully supported measure in Σ. Moreover,
Zc(β) < P(β) and β → P (β) is analytic on the largest open interval where
case 1 holds.
• If case 3 holds, then no equilibrium state gives positive weight to J .

2.2.3. Example: Hofbauer potential. apply the method to the Hofbauer potential in
{0, 1}N

A(x) =

{
− log(1 + 1

n
) if x = 0n1 . . . ,

−α < 0 if x = 1 . . . .

This case is usually associated to the Manneville-Pomeau map, say e.g.

f : [0, 1] 	 x 7→


x

1− x
if x ∈ [0,

1

2
],

2x mod 1 if x ∈ [1
2
, 1].

One can find in [1] a description of why these two cases are associated, and actually
similar.
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In that case we induce on the cylinder J := [1]. Note that only one orbit does not
enter into [1], and it is 0∞ = 000 . . .. Moreover, for any x ∈ [1], and for every β > 0

LZ,β(11[1])(x) = e−β.α
∞∑
n=0

(
1

n+ 1

)β
e−Z.(n+1).

For every β ≥ 0, this series converges if Z > 0 and diverges for Z < 0. Therefore
Zc = 0, and we point-out that

0 = hδ0∞ + β.

∫
φ dδ0∞ .

Now, the form of the potential also yields λβ,Z = Lβ,Z(11[1])(x) for any x in [1]. Let
us study the critical case Z = Zc:

λ0,β := e−β.α
∞∑
n=0

(
1

n+ 1

)β
.

For β ≤ 1, λ0,β = +∞. Furthermore, the function β 7→ λ0,β is decreasing on ]1,+∞[,
goes to +∞ if β → 1 and goes to 0 if β → +∞. Therefore, there exists a unique βc
such that λ0,βc = 1.

For β > βc, no equilibrium state gives positive weight to [1], which means that δ0∞

is the unique equilibrium state and the pressure is 0.

For β < βc, the map Z 7→ λZ,β is decreasing, and there is a unique Z = P(β) > 0
such that

λP(β),β = 1.

As P(β) > 0 = Zc, we are in the case 1, and the associated measure µ̂P(β) satisfies

hµ̂P(β)
(σ) + β

∫
φ dµ̂P(β) = P(β) > 0.

This last inequality shows that δ0∞ cannot be an equilibrium state, hence, there
exists an equilibrium state which gives positive weight to [1], and it is µ̂P(β).

For β = βc, this depends on the value of α.

2.2.4. Some more informations. If the potential A is continuous, one can prove that
Zc(β) is the pressure of the dotted system with hole J . Actually one consider the set
ΣJ of point in Σ whose orbit never enter into J . Then, Zc(β) is the pressure for the
system (ΣJ,σ) and the potential β.A.

e.g. For the Hofbauer potential and J = [1], the dotted system in {0∞}.

It is thus easy to check that β 7→ Zc(β) is a convex map. The pressure function
β 7→ P(β) is also convex. Due to Theorem 5 we emphasize the implicit function

λP(β),β = 1.
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3. Freezing phase transition with ground state supported into a
quasi-crystal

3.1. Settings and results.

3.1.1. Settings and one result. Let A be a finite set with cardinality D ≥ 2 called
the alphabet. The associated shift AN will still be denoted by Σ. If u = u0 . . . un−1

is a finite word and v = v0 . . . is a word, the concatenation uv is the new word
u0 . . . un−1v0 . . .. If v is a finite word, vn denotes the concatenated word

vn = v . . . v︸ ︷︷ ︸
n times

.

A substitution H is a map from an alphabet A to the set A∗ \{ε} of nonempty finite
words on A. It extends to a morphism of A∗ by concatenation, that is H(uv) =
H(u)H(v).

We refer to [18] for basic notion on substitutions.

Definition 3.1. If H is a substitution, its incidence matrix is the D × D matrix
MH with entries aij where aij is the number of j’s in H(i). Then, H is said to be
primitive if all entries of Mk

H are positive for some k ≥ 1.

A k-periodic point of H is an infinite word u with Hk(u) = u for some k > 0. If
k = 1 the point is said to be fixed. Then, H is said to be aperiodic if no fixed point
for H is a periodic sequence for σ.

We emphasize an equivalent definition for being primitive. The substitution H is
primitive if and only if there exists an integer k such that for every couple of letters
(i, j), j appears in Hk(i).

Let H be a substitution over the alphabet A, and a be a letter such that H(a) begins
with a and |H(a)| ≥ 2. Then there exists a unique fixed point u of H beginning
with a (see [18, 1.2.6]). This infinite word is the limit of the sequence of finite words
Hn(a). Assume that ω is a fixed point for H, then we set

K := {σn(ω), n ∈ N}.
If H is a primitive substitution, then K does not depend on the the fixed point ω.
If H is aperiodic, then K is uniquely ergodic but not reduced to a σ-periodic orbit.
In that case, the unique σ-invariant probability is denoted by µK

We recall that the language of a primitive substitution is the set of finite words
which appear in a fixed point. It is denoted by LH .

Definition 3.2. A substitution is said to be 2-full if any word of length 2 in A∗
belongs to the language of the substitution. A substitution is said to be marked if
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the set of the first (and last) letters of the images of the letters by the substitution
is in bijection with the alphabet.

We emphasize that the Thue-Morse substitution H :

{
0 7→ 01

1 7→ 10
satisfies our as-

sumptions. More precisely, the Thue Morse substitution and its language L fulfill:

• H is 2-full and marked.
• The non uniquely desubstituable words of L are 010, 101.
• Every word of length at least 5 in L is uniquely desubstituable inside the

language.
• The fixed point which begins by 0 can be written

u = 01.10.10.01.10.01.01.10.10.01.01 . . .

Both fixed points are obtained by the repetition of the rule “block block block block”.

• The language contains the words


0, 1

00, 01, 10, 11

001, 010, 011, 100, 101, 110

We refer to [18] and [5] for proofs.

The main result we want to present is the following:

Theorem 6 ([2]). Consider a primitive 2-full aperiodic and marked substitution, K
associated to H as above and consider a potential V := −ϕ with ϕ(x) =

1

n
+ o(

1

n
)

if d(x,K) = 2−n. Then there exists a positive number βc such that the pressure
function has a freezing phase transition at βc. More precisely:

• For β < βc the pressure function is analytic, there is a unique equilibrium
state for β.V and it has full support.
• For β > βc the pressure is equal to zero and µK is the unique equilibrium

state for β.V .

3.1.2. Some other results. Similar results have been obtained for other substitutions.
In [4] authors study the Fibonacci case (which is not marked). This has been
extended in [10] to k-bonacci substitutions. In [?] the following meta-theorem is
given:

Theorem 7. Consider a shift K with finite alphabet which satisfies the following
properties:

(1) It is linearly recurrent (see [7, Sec7]).
(2) The bispecial words are all of the length c.λn + o(λn), where λ > 1 and c

belongs to a finite set.
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(3) Bispecial words cannot overlap each other for more than a fixed proportion
than the smaller one

Then, every non-negative potential of the form ϕ(x) = 0 if and only if x belongs to
K and ϕ(x) = − 1

n
+ o( 1

n
) if d(x,K) = 2−n admits a freezing phase transition with

ground state supported into K.

3.2. Elements of the proof.

3.2.1. Inducing operator and spectral radius. We consider some word wJ which does
not belong to the language of the substitution. In other words, the cylinder [wJ ]
has empty intersection with K.

Then we consider the potential V (x) := − log

(
n+ 1

n

)
if d(x,K) = 2−n (with

n > 0). Note that by assumption d(x,K) ≤ 2−2 because H is 2-full.

We consider the induced transfer operator KZ,β on J := [wJ ] associated to that
potential V .

Lemma 3.3. The spectral radius for LZ,β is defined by λZ,β := LZ,β(11J)(x) for
every x in J .

Proof. Note that by construction if x belongs to J and has first return time n,
then for every k ≤ n − 1, d(σk(x),K) ≥ 2−(n−k+|wJ |. In other words, the maximal
coincidence of any point σk(x) with a word in the language L of the substitution is
lower than n− k + |wJ |.

This means that if y = wx is a J with first return time in J |w|, then for every x′

in J , and for every k ≤ |w|,
d(σk(wx′),K) = d(σk(wx),K).

Therefore for every x and x′ in J ,

LZ,β(11J)(x) = LZ,β(11J)(x′).

From this equality, it follows that LZ,β(11) is a constant function and then

LnZ,β(11) = (LZ,β(11))n

which shows that λZ,β is equal to LZ,β. �

For each β there exists a critical Zc(β) such that LZ,β is well defined for Z > Zc(β)
and does not exist for Z < Zc(β).

We claim that Zc(β) is non-negative because it has to be larger or equal to hµK +∫
V dµK = 0. Our goal is to show that for βc large enough, λ0,βc < 1. This will show

that
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• on the one hand Zc(β) = 0 for every β ≥ βc (because it is non-negative and
non-positive),
• no equilibrium state can give positive weight to J .

Lemma 3.4. If no equilibrium state gives positive weight to J , then µK is the unique
equilibrium state.

Proof. We do the proof by contradiction. Assume there is some equilibrium state
different to µK. Pick some cylinder J ′ with empty intersection with K with positive
weight (for this equilibrium state). Then we can induce on J ′ and we should be in
case 1 or 2 of Theorem 5. Then, there exists an equilibrium state with full support
and J has positive measure for this equilibrium state. �

3.2.2. Excursion Free words. Now let N be the integer such that d(J,K) > D−N ,
and consider

R = − log (1 +
1

N
).

The integer N is a parameter that can be fixed as big as needed. For a fixed N ,
we define two classes of integers for each return word u: the u-free and the u-
excursions. An integer k ∈ [0, n−1] is u-free if δ(uk . . . un−1wJ) ≤ N . The integers
between two consecutive u-free integers are called u-excursions. Remark that 0 is
u-free by definition of N .

We fix N > l(H), where l(H) was defined in Theorem ??. Then, every bispecial
word that appear during an excursion has length bigger than l(H).

Remark 6. The terminology free and excursion words are used in order to have in
mind some points far from K and some points close to K. Actually, when points are
far from K the digits may appear randomly as we are in the full shift AN. On the
contrary, when points are close to K the digits must obey for a while to the language
L. �

A word w is said to be excursion free if we can write w = EF such that the integers
inside [0, |E|] are w-excursions and those inside [|E| + 1, |E| + |F |] are w-free. The
set of all these words is denoted by EF .

Let us denote the following quantity 1

(17) CEF =
∑
w∈EF

e−βS|w|ϕ(w).

Proposition 3.5. Let J be a cylinder outside K defined by the word wJ et x ∈ J .
Assume that CEF (cf Equation (17)) is finite, then we have

L0,β(11J)(x) ≤
∑
k≥0

Ck
EF

∑
n≥0

e(n+1)(βR+logD).

1In all the following we make computations in R since we have positive terms. It allows us to
avoid problems of convergence of series.
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J

K

path
free

free excursion

Figure 3. Path with free moments and excursions

Proof. Consider a path starting from J , free at the beginning and at the end. In
between it alternates the words excursion-free, see Figure 3. Let us denote these
excursions-free words by EiFi, i ≤ k:

u = F0(E1F1)(E2F2) . . . (EkFk).

Use the cocycle property for the Birkhoff sum. �

3.2.3. Bispecial words and accidents. Let x be an element of AN which does not
belong to K, then we define and denote:

• The word w is the maximal prefix of x such that w belongs to the language
of K. Thus we denote d(x,K) = D−d, x = x1 . . . xd . . . with w = x1 . . . xd.
Let us denote δ(x) = d, and δnk = δ(σk ◦Hn(x)) for every integers k and n.
Note that δ = δ0

0.
• If there exists an integer b < d such that δ0

b (x) > d− b and δ0
i (x) = d− i for

all i < b, then we say that an accident appears at time b. The prefix of
σb(x) of length δ0

b is called the first accident of x of depth δ0
b .

Remark that the word w is non-empty since every letter is in the language of K if
the substitution is primitive. Then, w is the unique word such that

x = wx′, w ∈ LH , wx′0 /∈ LH .

Figure 4 illustrates the next lemma.

Lemma 3.6. Let x be an infinite word not in K. Assume that δ(x) = d and that the
first accident appears at time 0 < b ≤ d then the accident xb . . . xd−1 is a bispecial
word of LH .

Remark 7. If A has cardinality two, then x0 . . . xd−1 is not right-special. Moreover,
and always if A has cardinality two, if x = σ(z) and there is an accident at time 1
for z, then x0 . . . xd−1 is not left-special. �
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w

y y′

y y′

x
db d′

x′

Figure 4. Accidents-dashed lines indicate infinite words in K.

Definition 3.7. We define inductively

b1 = b = min{j ≥ 1, d(σjx,K) ≤ d(σjx, σj(y))}
b2 = min{j ≥ 1, d(σj+b1x,K) ≤ d(σj+b1x, σj(y′))}
b3 = min{j ≥ 1, d(σj+b1+b2x,K) ≤ d(σj+b1+b2x, σj(y”))}
. . .

We also define Bj = b0 + . . . bj where b0 = 0, and let us denote dj = δ(σBj−1x).

The integers Bi, i ≥ 1 are called the times of accident, and the words xbi . . . xbi+bi+1

are called accidents.

Proposition 3.8. Let H be a primitive, aperiodic and marked substitution. There
exists l(H) such that ifWb denotes the set of bispecial words of length less than l(H),
then, every bispecial word can be written Hn(v) with v ∈ Wb and n some integer.

Remark 8. We choose N to be large enough such that N >> l(H) holds.

We call λ the dominating eigenvalue for the incidence matrix of H. Then Proposition
3.8 yields:

Corollary 3.9. There exist 0 < θ < λ and a finite set of positive numbers c, such
that the lengths of the bispecial words of LH are of the form cλn +O(θn), n ∈ N.

Note that the numbers c are the lengths of the words in Wb.

3.2.4. main step: how to count excursions. Note that
∑
n≥0

e(n+1)(βR+logD) can be as

small as wanted if β increases because β.R goes to −∞. Then the goal is to prove
that for any β big enough CEF is smaller than 1.

CEF is the contribution of infinitely many paths. Accidents are the source of increase
for CEF : they may be very long paths with contribution (Sn(V )(x)) very close to 0.

We point out that in a Excursion-Free path, the Free part is easy to bound as we
did just above.
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• x
d0

b0 = 0
B1 B2 d1 + b1 d2 +B2B3

W (1) W (2) W (3)

Figure 5. Accidents inside an excursion-free word.

The main idea is to rank well all the Excursion paths. Instead of ranking them with
respect to their respective length we will rank them with respect to the accidents:

(1) We first rank all the excursion-words with respect to the number M of acci-
dent(s) that they have. We call CEF(M) the contribution of Excursion-Free
paths with exactly M accidents. Note that M ≥ 1 because the entrance in
the excursion zone is only realized by an accident.

(2) Then, we rank the Excursion paths with M accident with respect of the
bispecial words involved. Recall Proposition 3.8, therefore all the bispecial
words involved have lenght > l(H) and are thus of the form Hk(v) with
v ∈ Wb.

(3) If we know the bispecial words W i i = 1, . . .M involved the path (excursion
part) is of the form W 1T1W

2T 2 . . .WM . . .. Then, the linear recurrence of
K shows that there are a countable set of possible T i’s

T i(0), T i(1), . . .

with increasing sizes of the form

|T i(j)| ∼ |T i(0)|+ j|W i+1|.

Then, the contribution of the path between two Bi and Bi+1 is of the form(
di + 1− bi+1

di + 1

)β
.

Ranking the path as said above one manage to show that CEF(M) is bounded by a
quantity rM with 0 < r < 1 for β large enough. Actually, one may show that r → 0
if β → +∞.
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