FREEZING PHASE TRANSITION WITH SUPPORT IN A
QUASICRYSTAL IN ERGODIC THEORY
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1. CURIE-WEISS MODEL WITH RESPECT TO ERGODIC THEORY

1.1. Different but close settings.

1.1.1. The Curie-Weiss model. Probabilistic setting 1. We consider the sets A =
{=1,+1} and ¥ := AN, A point x in ¥ is a sequence zg, 1, ... (also called an
infinite word) where the z; are in A. Most of the times we shall use the notation
T = xgT1%y.... A x; € A can either be called a letter, or a digit or a symbol.
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If wy...w,—1 is a finite word, we set

(1) H,(w) = —% Z W,

4,7=0

It is called the Curie-Weiss Hamiltonian. The empirical magnetization for w is
n—1

my,(w) == %ij. Then we have H,(w) = —%(m,(w))>.

J=0

We denote by P := p®N the product measure on ¥y, where p is the uniform measure
on {—1,1}, i.e. p({1}) = p({—1}) = %, and we define the probabilistic Gibbs measure
(PGM for short) i, 3 on X9 by

(2) pin,p(dw) = ————P(dw),
n,B
where Z, 5 is the normalization factor
1 ,
_ —B.Hn(w')
Zn”g = on / ;_ e .

Note that p, g can also be viewed as a probability defined on A™.

1.1.2. Ergodic and Dynamical settings. The shift map o is defined on X by

o(xox1T9...) = T129 . . ..

The distance between two points © = zox; ... and y = yoy1 . .. is given by

M) P —

= Omin{n, oy}

We sometimes represent this distance graphically as follows:

o = Yo TN
u X
Tpn—1 = Yn—1

FI1GURE 1. The sequence = and y coincide for digits 0 up to n—1 and
then split.

A finite string of symbols zg...x,_1 is also called a word, of length n. For a word
w, its length is |w|. A cylinder (of length n) is denoted by [zq ...z, _1]. It is the set
of points y such that y; = x; for i =0,...n — 1.
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For ¢ : ¥ — R continuous and 3 > 0, the pressure function is defined by
(3) P(B.¢) = Sup{hu+ﬁ/¢du},
m

where the supremum is taken among the set M, (22) of o-invariant probabilities on
> and h, is the Kolmogorov-Sinal entropy of p. The real parameter § is assumed
to be positive because it represents the inverse of the temperature in statistical
mechanics. It is known that the supremum is actually a maximum and any measure
for which the maximum is attained in (3)) is called an equilibrium state for B.¢. We
refer the reader to [3], 19] for basic notions on thermodynamic formalism in ergodic
theory.

If ¢ is Lipschitz continuous then the Ruelle-Griffith theorem (see [I1]) states that
for every f3, there is a unique equilibrium state for 5.¢, which is denoted by i3 if the
choice of ¢ is clear. The measure fig is ergodic and it shall be called the dynamical
Gibbs measure (DGM for short). It satisfies for every @ = xgx ... and for every n

ep fig([zo - .. Tn1]) Cgs
(4) ¢S S @@ =€

where Cj is a positive real number depending only on £ and ¢ (but not on x or n),
and S, (¢) stands for ¢+ poo + ...+ oo™ L.

1.1.3. Relations between these definitions of Gibbs measures. Our main question is
to understand relations/differences between these two definitions of Gibbs measures.
As we pointed out above, y, g lives in A™ whereas iz lives in ¥ = AN.

If P,, P are probability measures on the Borel sets of a metric space .S, we say that
P, converges weakly to P if [ fdP, — [, fdP for each f in the class Cy(S) of

bounded, continuous real functions f on S. In this case we write P, — P.
n—-+o0o

Then, our first result concerns the weak convergence of the measures 3.
Theorem 1. Weak convergence

Let &5 be the unique point in [0, 1] which realizes the mazimum for pr(x) := log(cosh(B.x))—
§x2. Let [ and [y, be the dynamical Gibbs measures for b1 and b.1j_y) respec-
tively. Then

/70 Zfﬁ S 17
(5) Mn.g i> 17 ~_ .
i fpe, + lizpes| B> 1.

Remark 1. Actually i, 53 converges towards % [ﬁ;ﬂ.gﬂ + ﬁ;ﬂgﬁ] for every > 0 since
we shall see that for 8 < 1 we have £5 = 0, and it is clear that iy = [ig = fio = p=".
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We refer to [8], sections IV.4 and V.9, for discussion of the Curie-Weiss model and
historical references. By using this theorem, Orey ([16], Corollary 1.2) proved by a
nice simple probabilistic argument the weak convergence of ji,, 3 towards an explicit
atomic measure.

Remark 2. It is said that there is a phase transition at g = 1.

1.2. Proof of Theorem[1]. To prove the convergence of ju,, g towards p, it is enough
to show that for every cylinder C,

(6) Tim pin,5(C) = p(C).

First we justify that ¢; admits a unique maximum in [0, 1] and use this point to get

convergence for yi, g(C'), where C' is any cylinder. In the second subsection we show
that this limit is equal to the right convex combinations of DGM’s.

1.2.1. The auziliary function ¢; and limit for p, 3. We recall that we set ¢;(z) :=
log(cosh(Bx)) — 222,

Lemma 1.1. Maxima for ¢;

The function ¢ attains its mazimum on R™ at a unique point £5 which is the unique
positive solution of the equation tanh(fz) = x. If B <1, then & = 0.

Proof. Note that ¢, (z) = B (tanh(f.2) — 2) and ¢%(z) = B.(8 — 1 — B.tanh?*(B.x)).
If 5 <1, ¢ is non-positive, thus ¢ decreases and ¢}(0) = 0 yields that ¢y is a
decreasing function. The maximum is then attained for {z = 0.

If B > 1, then ¢ is positive and then negative, which yields that ¢} is first an
increasing and then a decreasing function. Note that ¢7(0) = 0 and ¢}(1) < 0,
which shows that ¢/ is positive on some interval |0, {z[ with 0 < £z < 1 and negative

on |€5,+00[. Consequently, ¢; reaches its maximal value on R at the points £z
defined by

(7) tanh(5.65) = &s. D

Now we are ready to compute the limit of a fixed cylinder. Let w = wy...w,—1 be a

finite word of length p. We denote by S,(w) = Zf:_ol w; the sum of the p digits of w.

Lemma 1.2. Limit of the measure of a fixed cylinder
I
% Zfﬁ S 1a

(8) i i 5([wo - wpa]) = § ]
5 (f(&) + f(=8&)) if 5> 1,

n—o0

where

f(y):m-
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Proof. For big n,
[w] = |_| [wo .. Wp_1Qp ... pq] = |_| [wal,

and
Z G_BHR("JO‘)
a, |aj=n—
g (W) = 37 malwal) = S

@, |aj=n—p

a, |al=n
We set s := 3770 w;, S(a) = Z?:_pl a;, and S, (wa) := s+ S(«). Then,

Ho(wo) = 5 (s + 5(0))”

We use the equality

a2 1 /+OO _§+\/§az d
e = — e x,
V2T J s

sometimes called the Hubbard-Stratonovich transformation ([12],[20]), to compute
the following.

—+oco 2
8 S2(wa) - 1 =z \/Emsn(wa)
E e2n°n = — e 2 5 eV dx
\ 27 /—oo >

«, |a‘:n_p
_ 1 e e—é-l—\/gacs Z eﬁmS(a) dr
 Vor )

o

1 —+00 22 B ﬁ np
— —/ e‘TJ’\/;“Q”_p cosh —x dx
V2T J n

_ 2T e Bastnp)togeosn(y/22)
\/271' —00 |

In this last integral we make the change of variable §.y := \/Ex, and as
n

| . B 2P By Sp(w)
exp (f.s.y — plogcosh (B.y)) = CETEDD
we obtain
2n +oo
9) 3 S wa) _ 2°VB 21 £(y) dy.

V2T J_so

a, |a|l=n—p
Similarly, p = s = 0 yields

S efsie - 2V "
V2t )

ener(y) dy,

a, |aj=n
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therefore we obtain that
J2Z ener® f(y) dy
fj_;o ener(y) dy '

(10) pn g ([w]) =

We recall that the Laplace method shows that if ¢/, vanishes on a single point ¢ in
the interior of the interval I and if ¢7(§) < 0 and f(&) # 0, then

/e”‘“(y)f(y)dy ~n o ﬂenw(f)f(f)nfl/?
I e7(&)]

If 5 < 1: we may consider / = R and { = &g = 0. We thus get ¢/(0)) = (5 — 1),
f(0) = &, and

2P

pn(]) ~se 0 =

If 5 = 1: in this case ¢(0)) = 0 but the Laplace method still works if we consider

the least integer k such that @’“(0) # 0. We do not need to calculate it because we
have as in the preceding case that

1
/enw(y)f(y)dy ~rsoo _/enw(y)d%
R 2° Jr
1
%.
If 3 > 1: we may consider two intervals R_ and R, and § = £&g. Then we get

therefore we still have i, s([w]) ~n—sio00

"7 W) f(y)dy ~n-so emf1Ea) (f(&5) + f(—€5))n~ Y2,

0 7 (Es)]

which yields

/- o

i () ~omroe /(&) +2f (=€) 0

1.2.2. Identification of the limit as a convexr combination of DGM’s. First, we point
out that Lemma [1.2] yields lirf tnp = o if B < 1. We thus have to deal with the
n—-+0o0o

case 3 > 1.

Let us first compute the dynamical Gibbs measures i and 7, . We denote by
L, (w):= Zi;é 1,,—1 the number of digits of w which take the value 1, and similarly
p—1

L, _(w) := ) }_olu,=—1 is the number of digits which take the value —1.

Lemma 1.3. Computation for ji;

. eblp+(w) . ebLp,— (@)
(11) fy (w]) = m and 1, ([w]) = m.
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Proof. The function b.1[;;) depends only on the zero coordinate. It is shown for
instance in Example 4.2.2 of [13] that in this case the supremum in (3] is attained
for the product measure P, := p?N, where p € [0,1], p, = pd1 + (1 — p)o_y, and p
satisfies

—plogp — (1 — p)log(l —p) +bp = sup (—qlogqg — (1 —q)log(l —q) + bq) .

q€[0,1]
It is easy to show that p = %, and then
ebLp.+(w)
iy ([w]) = @1
Exchanging the roles of +1 and —1 gives the equality
ebly,— (W)
iy ([w]) = CFS O

We recall that S,(w) = S 0_ wy = Ly (W) — L, (W) = 2L, 4 (W) —p =p—2L, (w).
Then
eP€s5p(w)
f(&s) = (6/85/3 T 6_556)13
eP€s(2Lp,+(w)—p)
(6/3’5/3 4+ e B8 )P
e2P&sLp,+(w)

(2% 1 1)

2883 Lp,— (w)
timpino(w]) = 5 (e, (1) + iz, (@]):

n—-+oo 2

Similarly we have f(—&g) = and replacing these values in we get

and the theorem is proved.

1.3. A more general result for the Curie-Weiss-Potts model. The Curie-
Weiss-Potts model will be for A = {#',... 07} with ¢ > 2. In that case we shall
write X, instead of 3.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word w = wqg -+ - w,_1 by

(12) How) = —— S 1, _
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We define the vector L, (w) = (Lp1(w), -, Lng(w)) where

) n,q

n—1
Loip(w) = Ly,
=0

is the number of digits of w which take the value 6%, so that we can write

n—1 q n—1 2
Z ]]-wj:wi = Z (Z 1wi9k) = ||L7’L(w)||27

i,j=0 k=1 \i=0

where || - || stands for the euclidean norm on RY.

We denote by P := p®N the product measure on X, where p is the uniform measure
on A, ie. p= % >4_, 0gr, and we define the probabilistic Gibbs measure y,, 5 on %,
by
e~ B-Hn(w) oan | Ln (@)1
(13) () = () = P (d),
Zn,,B Zn,ﬂ

where Z,, 5 is the normalization factor

1 :
Znﬁ:q_n > e llLn(@)?

W', |o'|=n

Now we can state the analog of Theorem [I]

Theorem 2. Weak convergence for the CWP model

For1 <k <gq, b € R, let i¥ be the dynamical Gibbs measure for b.1jgry. Let

B, = %. For 0 < B < B, set sg = 0 and for B > (3. let sz be the largest

solution of the equation

e’s —1
14 _ -t
(14) ST qg—1
Then,
(P if0< B <P
1 q
w - Hﬁ_s Zfﬁ > @ca
(15) g =2 i
Aﬁ%] + B ZZ:I Z’ch,sﬁc Zf/B o /3
\ A + qB e
a=2 a=2
with A = (1— e ) > und B = (1—&) ’
q(g—1) q

Remark 3. Actually ji,, 5 converges towards % p ﬁg.sﬁ for every B # B. since
sg =0 for B < B, and it is clear that if = p®" for each 1 < k < q.
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We refer to [9] for discussion of the Curie-Weiss-Potts model and historical refer-
ences. Orey ([16], Theorem 4.4) mentions the weak convergence of y, g towards an
explicit atomic measure, but he makes a mistake concerning the case g = [, as
pointed out in [9].
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2. CONSTRUCTION OF DYNAMICAL (LOCAL) EQUILIBRIUM STATES

2.1. Classical theory.

2.1.1. the Transfer operator. We consider a fixed a-Hoélder potential A : ¥ — R.

We recall that A : ¥ — R is said to be a-Holder, 0 < « < 1, if there exists C' > 0,
such that, for all z,y we have | A(x) — A(y) | < Cd(z,y)*.

For a fixed value «, we denote by H,, the set of a-Hoélder functions A : ¥ — R. H,,
is a vector space.

For a fixed a, the norm we consider in the set H, of a-Holder potentials A is

4] = sup A@ = AG 01 a@)).

TH#Y d(I, y)a €Y

For a fixed «, the vector space H, is complete with the above norm.

Definition 2.1. We denote by L4 : C°(X) — C°(X) the Transfer operator corre-
sponding to the potential A, which is given in the following way: for a given ¢ we
will get another function La(¢) = ¢, such that,

pla)= Y " olax).

a, argEA

In another form

o(x) = o(zory ) = Z eAlazozize,...) ¢(axorizsy...).

a,arg€A

The transfer operator is also called the Ruelle-Perron-Frobenius operator. It had
been introduced by Ruelle and extends in some sense the matrices with positive
entries. We remind that for such matrices, the Perron-Frobenius theorem gives
information on the spectrum.

It is immediate to check that £4 acts on continuous functions. It also acts on
a-Holder functions if A is a-Holder.

Consequently the dual operator acts on measures:

Lyip — v

[vivi= [ £atw)dn

Theorem 3 (see [3]). Let Aa be the spectral radius of La. Then, A is an eigenvalue
for L4 and L% : there exists a probability measure v4 such that

»CZ(VA) = /\AVA-
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There exists a unique Hy, up to the normalization /HA dva =1, such that

LA(Hy) = AHa.

The measure defined by pa = Hava is o-invariant and is the unique equilibrium
state for A. The pressure satisfies P(1) = Aa

This measure is actually a Gibbs measure: there exists C'4 > 0 such that for every
x = xoxy ... and for every n,

—cu o bal[zo- - x0]) _ ¢
(16) ¢S M@ e =€

These two inequalities yields that the free energy for p, is logAy. The left-side
inequality yields that for any other ergodic measure v,

h,,+/Ad1/ < log A\ 4.

The same work can be done for 5.A instead of A. Actually the proof of Theorem
and general results for perturbations of spectrum of operators yield that 5 +— P(f)
is locally analytic. One argument of connexness shows that it is globally analytic.

2.1.2. A complete and exact computation for one example. Let us now assume that
A depends on two coordinates, that is

A(l’ol‘lxg .. ) = A(l’o, (L’1>.

We denote by A(7, j) the value of A in the cylinder [ij], i,7 € {0,1}. In this case,
the Transfer operator takes a simple form:

La(@)(momrza..) = > ) glazgrizy . ..) = e O*)p(0x) + A0 g(1x).
ae{0,1}

Let M be the matrix will all positive entries given by M; ; = eA(:9),

Lemma 2.2. The spectral radius of L4 is also the spectral radius of M.

Proof. Assume that ¢ is a function depending only on one coordinate, i.e.,

gb([E()CClZEQ .. ) = qb(l’o)
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Then, denote by abuse of notation ¢ the vector (¢(0), ¢(1)). Then, for every j

1

La(9)(4) =Y Mij.0(i),

J=0

which can be written as L4(¢) = M*.¢. This yields that the spectral radius Ay; of
M is lower or equal to A4.

We remind that the spectral radius is given by

: 1 n n n
Aa = limsup —log |||C4][], and [[IC4][] = sup |I£7"(%))[]e.

n—+oo llel1=1
The operator £, is positive and this shows that for every n, |[|L%]|] = [|£%(1)]|c-
Now, 1 depends only on 1 coordinate, which then L£7% (1) = M™(1). This yields
Aa < A O

Theorem 4. (Perron-Frobenius) Let B = (b;;) be a d x d matriz with positive
entries. Then, the spectral radius of B, say X, is a simple dominated eigenvalue.
The associated eigenspace is generated by some “positive” vector u = (uy,- - ,uq)
with u; > 0.

By Theorem (4] there exists an eigenvector say v = (v, v1) with positive entries for
the matrix M associated to As. We may assume vy + v = 1.

Let us define the 2 x 2 matrix Py = P4(i, j) with

Ay,

PA(%]) =

>\AVi
Note that P4 is a line stochastic matrix:
PA<O, O) + PA(O, 1) =1= PA(l, 0) + PA(l, 1)

Theorem 4] applied to the adjoint matrix M™* yields a left-eigenvector for M with
positive entries H = (hg, hy). Set u; = h;.v; and assume normalization pg + g1 = 1.

p-Pa=p

and pis the invariant measure associated to the Markov chain with transition matrix
P,. Moreover we get

pa([zo ... n-1]) = paoyPa(zo, x1) . .. Pa(Tp—2, Tp_1).

The exact computation yields pa([zg...zn-1]) = theS"(A)(x)_”log’\A.z/xn_l. Since v
and h have positive entries, this shows that p4 is a Gibbs measure.

Things can be summarized as follows:
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Let M = (M;;) be the matrix with entries e, Let
r = (r,...74) be the right-eigenvector associated to A
with normalization > r; = 1. Let 1 = (Iy,...,1s) be
the left-eigenvector for A with renormalization ) [;r;=1.
Then, r is the eigenmeasure v, and 1 is the density H 4.
The Gibbs measure of the cylinder [ig...4, 1] is pa =

([20 .. .in,1]> = liOBS"(A)(x)_nbg >\A7=Z.n_1

Remark 4. Doing this with A := .(1.i11]) one recovers the Dynamical Gibbs mea-
sures from Theorem 1]

2.1.3. Phase transition.

Definition 2.3. We say that there is a transition phase at By if the pressure function
P(B) is not analytic at fy. We say that it is a freezing phase transition if P(5) is

affine for every 8 > f..

In case of a freezing phase transition, after the transition P(f3) is of the form

P(B) = h+ B.a.

It is then easy to check that a satisfies: ¢ = max / Adp. In ergodic theory, a

measure satisfying this last property is said to be A-maximizing. In Statistical
Mechanics it is a ground state. The quantity h is called the residual entropy. It
corresponds to the maximum of the Kolmogorov entropy among all A-maximizing
measures.

One question we are interested in is to know if we can get
freezing phase transition with support in a quasi-crystal
set after the transition.

Remark 5. It is noteworthy that the number of equilibrium state is “almost” inde-
pendent to the analyticity of the pressure function B +— P([). There are examples
of systems with a phase transition despite uniqueness of the equilibrium state ( the
Manneville-Pomeau maps, see [21]). On the contrary, there are examples where the
pressure 1s analytic on some interval but there are finitely many different equilibrium
states (see [15]).

2.2. On the road to detect freezing phase transition.

2.2.1. Induced map. We consider a cylinder J = [wy] in 3. For x in J, the first
return time is 7(x) = min{n > 1,0"(z) € J} < +00. Then we consider the first
return map F(z) := ¢7@(z). This map is well defined if 7(x) < +o0o. The main
important point is that the inverse branches are well defined everywhere on J: if z
belongs to J and if 2’ satisfies F'(2") = z, hence we can write 2’ under the form

= wz.
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Then, for every y in J, ¢ = wy satisfies F/(y') =y and 7(y') = 7(2') = |w|.

It is also well known that if iz is a o-invariant probability measure with z(J) > 0,
p(-nJ)
(/)
Tdu < +o00o, then there exists a unique
p(-nJ)
f(J)

then, the conditional measure p = is F-invariant. Conversely, if p is

=)

a F-invariant probability measure and

\

o-invariant probability iz such that pu := holds (see [6]).

At that stage we have two different dynamical systems: (X,0) and (J, F). The
question is to know if studying thermodynamic formalism for one system yields
information on the thermodynamic formalism for the other one. By the Abramov
formula (see [I7] p. 257-258) we get

P with equality iff 7 = equil. state

() + [ Adi

ha(f) + /A dp — P 0 with equality iff 7 = equil. state

0 with equality iff 77 = equil. state

) (1) + [ $:0() = Por(y )

h,(F) + /ST(,)(A) —P.r(.)du 0 with equality iff 7 = equil. state

This simple sequence of inequalities shows that the thermodynamic formalism for
(33, 0) and potential A is related to the thermodynamic formalism for (J, F') and

Sy (A) ().

As we have seen above, the thermodynamic quantities come from the spectrum of
the Transfer Operator.

2.2.2. Inducing scheme and local thermodynamic formalism. Let A : ¥ — R be
some potential function and J = [w;] be a cylinder. Consider the first return map
to J, with return time 7(x) = min{n > 1,0"(z) € J}. Then we define, for each
£ >0and Z € R, an induced transfer operator by:

Lzp(g)x) =Y Y HSnBumZg(y)

neN r(y)=n
a"(y)=z
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N-1
where Sy (A)(y) = Z Aoc*(y) and g is a continuous function from .J to R.
k=0

For a given function A, it is a power series in e Z.

Theorem 5 ([14]). We have with the previous notations:

e For every > 0, there exists a minimal Z.(5) € RU {—o0} such that for
every Z > Z.(8), Lz acts on C°(J). In particular, for every Z > Z.(3),
for every x € J and for every g € C°(J), Lz5(g)(x) converges.

e P(5) > Z.(9).

o Let Ay 3 be the spectral radius for Lz 5 and for Z > Z.(5). Then Z +— log Az 3
is a decreasing function and we have three possible cases given by Figure [

log)\Zﬁ 7 7 7

0g Az 3 log Az 3
Zc(B) Ze( Ze(8)

FIGURE 2. The tree possible graphs for log Az 3.

o [fcase 1 holds, thenlog Az s = 0 if and only if Z = P(B) and there is a unique
equilibrium state for B.A; it is a fully supported measure in . Moreover,
Z.(B) < P(B) and B8 — P(B) is analytic on the largest open interval where
case 1 holds.

o [f case 3 holds, then no equilibrium state gives positive weight to J.

2.2.3. Example: Hofbauer potential. apply the method to the Hofbauer potential in
{0, 13"

_ 1) if o — On
Alz) = log(lfn)lfx 0"l...,
—a<0ifz=1....

This case is usually associated to the Manneville-Pomeau map, say e.g.

T . 1
F0]0 o Ty Trelog)

2z mod 1if z € [5,1].

One can find in [I] a description of why these two cases are associated, and actually
similar.
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In that case we induce on the cylinder J := [1]. Note that only one orbit does not
enter into [1], and it is 0°° = 000. ... Moreover, for any x € [1], and for every 5 > 0
o] 1 B
L 1 _ ,—Ba —Z.(n—i—l).
zs(Ip)(x) = e 7; (n+ 1) €

For every g > 0, this series converges if Z > 0 and diverges for Z < 0. Therefore
Z. =0, and we point-out that

mﬂ%w+ﬂ/¢ww.

Now, the form of the potential also yields Ag z = Lg z(1py))(x) for any x in [1]. Let
us study the critical case Z = Z,.

sax~ (L)
Ao = ¢ '“Z<n+1> |

n=0

For 8 <1, A3 = +00. Furthermore, the function 5 +— X s is decreasing on |1, 400,
goes to 400 if § — 1 and goes to 0 if 5 — +o00. Therefore, there exists a unique .
such that A\g g, = 1.

For B > f., no equilibrium state gives positive weight to [1], which means that dpe
is the unique equilibrium state and the pressure is 0.

For 5 < f3., the map Z — Az p is decreasing, and there is a unique Z = P(3) > 0
such that

Ap(g).s = 1.
As P(B) > 0 = Z., we are in the case 1, and the associated measure Jip(g) satisfies

hiines (0) + B / b dfips) = P(8) > 0.

This last inequality shows that dp cannot be an equilibrium state, hence, there
exists an equilibrium state which gives positive weight to [1], and it is fip(s).

For 8 = f3., this depends on the value of a.

2.2.4. Some more informations. If the potential A is continuous, one can prove that
Z.(B) is the pressure of the dotted system with hole J. Actually one consider the set
Y7 of point in 3 whose orbit never enter into J. Then, Z.(3) is the pressure for the
system (X,,) and the potential 5.A.

e.g. For the Hofbauer potential and J = [1], the dotted system in {0°}.

It is thus easy to check that 8 — Z.(f) is a convex map. The pressure function
p — P(B) is also convex. Due to Theorem [5| we emphasize the implicit function

App).s = 1.
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3. FREEZING PHASE TRANSITION WITH GROUND STATE SUPPORTED INTO A
QUASI-CRYSTAL

3.1. Settings and results.

3.1.1. Settings and one result. Let A be a finite set with cardinality D > 2 called
the alphabet. The associated shift A" will still be denoted by 3. If © = g . .. Up_1

is a finite word and v = vy... is a word, the concatenation uv is the new word
Ug ... Up_10g . ... If vis a finite word, v™ denotes the concatenated word
vt =v...0.
——
n times

A substitution H is a map from an alphabet A to the set A*\ {€} of nonempty finite
words on A. It extends to a morphism of A* by concatenation, that is H(uv) =
H(u)H (v).

We refer to [18] for basic notion on substitutions.

Definition 3.1. If H is a substitution, its incidence matrix is the D x D matrix
My with entries a;; where a;; is the number of j’s in H(i). Then, H is said to be
primitive if all entries of M%, are positive for some k > 1.

A k-periodic point of H is an infinite word u with H*(u) = u for some k > 0. If
k =1 the point is said to be fixed. Then, H is said to be aperiodic if no fived point
for H is a periodic sequence for o.

We emphasize an equivalent definition for being primitive. The substitution H is
primitive if and only if there exists an integer £ such that for every couple of letters
(i,7), j appears in H*(4).

Let H be a substitution over the alphabet 4, and a be a letter such that H(a) begins
with @ and |H(a)| > 2. Then there exists a unique fixed point u of H beginning
with a (see [I8] 1.2.6]). This infinite word is the limit of the sequence of finite words
H"(a). Assume that w is a fixed point for H, then we set

K :={o"(w), n € N}.

If H is a primitive substitution, then K does not depend on the the fixed point w.
If H is aperiodic, then K is uniquely ergodic but not reduced to a o-periodic orbit.
In that case, the unique o-invariant probability is denoted by ux

We recall that the language of a primitive substitution is the set of finite words
which appear in a fixed point. It is denoted by L.

Definition 3.2. A substitution is said to be 2-full if any word of length 2 in A*
belongs to the language of the substitution. A substitution is said to be marked if
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the set of the first (and last) letters of the images of the letters by the substitution
1s in bijection with the alphabet.

001
We emphasize that the Thue-Morse substitution H : 10 10 satisfies our as-

sumptions. More precisely, the Thue Morse substitution and its language £ fulfill:

e H is 2-full and marked.

e The non uniquely desubstituable words of £ are 010, 101.

e Every word of length at least 5 in £ is uniquely desubstituable inside the
language.

e The fixed point which begins by 0 can be written

v =01.10.10.01.10.01.01.10.10.01.01 . ..

Both fixed points are obtained by the repetition of the rule “block block block block”.
0,1
e The language contains the words ¢ 00,01, 10,11
001,010,011, 100,101,110

We refer to [18] and [5] for proofs.
The main result we want to present is the following:

Theorem 6 ([2]). Consider a primitive 2-full aperiodic and marked substitution, K

1 1
associated to H as above and consider a potential V := —p with ¢(x) = — + o(—)
n n

if d(z,K) = 27". Then there exists a positive number . such that the pressure
function has a freezing phase transition at B.. More precisely:

o For B < fB. the pressure function is analytic, there is a unique equilibrium
state for B.V and it has full support.

o For B > [. the pressure is equal to zero and ux s the unique equilibrium
state for B.V.

3.1.2. Some other results. Similar results have been obtained for other substitutions.
In [4] authors study the Fibonacci case (which is not marked). This has been
extended in [I0] to k-bonacci substitutions. In [?] the following meta-theorem is
given:

Theorem 7. Consider a shift K with finite alphabet which satisfies the following
properties:

(1) It is linearly recurrent (see [7, Sec7]).
(2) The bispecial words are all of the length c.\" + o(A™), where A > 1 and ¢
belongs to a finite set.
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(3) Bispecial words cannot overlap each other for more than a fixed proportion
than the smaller one

Then, every non-negative potential of the form p(x) = 0 if and only if x belongs to
K and ¢(z) = =2 + o(L) if d(z,K) = 27" admits a freezing phase transition with

ground state supported into K.
3.2. Elements of the proof.

3.2.1. Inducing operator and spectral radius. We consider some word w; which does
not belong to the language of the substitution. In other words, the cylinder [w;]
has empty intersection with K.

n—+1

Then we consider the potential V(x) := —log< ) if d(z,K) = 27" (with

n > 0). Note that by assumption d(z,K) < 272 because H is 2-full.

We consider the induced transfer operator Kz 5 on J := [w,] associated to that
potential V.

Lemma 3.3. The spectral radius for Lz s is defined by Azp == Lz5(1;)(z) for
every x in J.

Proof. Note that by construction if x belongs to J and has first return time n,
then for every k < n — 1, d(c*(x),K) > 2-(=*+lwsl n other words, the maximal
coincidence of any point o*(x) with a word in the language £ of the substitution is
lower than n — k + |wy].

This means that if y = wx is a J with first return time in J |w|, then for every z’
in J, and for every k < |w|,
d(o"(wz'),K) = d(o*(wz), K).
Therefore for every x and z’ in J,
Lz5(1y)(x) = Lz,5(1)(z").
From this equality, it follows that £z (1) is a constant function and then
zp(1) = (Lz,5(1))"
which shows that Az s is equal to Lz 3. O

For each [ there exists a critical Z.(f) such that L g is well defined for Z > Z.(3)
and does not exist for Z < Z.(3).

We claim that Z.(f) is non-negative because it has to be larger or equal to h,, +
[V dux = 0. Our goal is to show that for 3, large enough, Ao g, < 1. This will show
that
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e on the one hand Z.(f) = 0 for every 8 > (. (because it is non-negative and
non-positive),
e no equilibrium state can give positive weight to J.

Lemma 3.4. If no equilibrium state gives positive weight to J, then ug is the unique
equilibrium state.

Proof. We do the proof by contradiction. Assume there is some equilibrium state
different to ux. Pick some cylinder J’ with empty intersection with K with positive
weight (for this equilibrium state). Then we can induce on J’ and we should be in
case 1 or 2 of Theorem [5] Then, there exists an equilibrium state with full support
and J has positive measure for this equilibrium state. O

3.2.2. Excursion Free words. Now let N be the integer such that d(J,K) > D=V,
and consider

1
R=—log(1+ —).
og ( +N)

The integer N is a parameter that can be fixed as big as needed. For a fixed N,
we define two classes of integers for each return word u: the u-free and the u-
excursions. An integer k € [0,n— 1] is u-free if 6 (uy . .. up—qwy) < N. The integers
between two consecutive u-free integers are called u-excursions. Remark that 0 is
u-free by definition of N.

We fix N > [(H), where I(H) was defined in Theorem ??. Then, every bispecial
word that appear during an excursion has length bigger than [(H).

Remark 6. The terminology free and excursion words are used in order to have in
mind some points far from K and some points close to K. Actually, when points are
far from K the digits may appear randomly as we are in the full shift AN. On the
contrary, when points are close to K the digits must obey for a while to the language
L. 1

A word w is said to be excursion free if we can write w = E'F such that the integers
inside [0, |E|] are w-excursions and those inside [|E| + 1, |E| + |F|] are w-free. The
set of all these words is denoted by £F.

Let us denote the following quantitym
(17) Cer = Z e BSwp(w)

weEF
Proposition 3.5. Let J be a cylinder outside K defined by the word wy et x € J.
Assume that Cer (cf Equation (17)) is finite, then we have

Los(Ly)(z) <D CER Y elrtDERA0D),

k>0 n>0

n all the following we make computations in R since we have positive terms. It allows us to
avoid problems of convergence of series.
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- {ree .
L excursion

FI1GURE 3. Path with free moments and excursions

Proof. Consider a path starting from J, free at the beginning and at the end. In
between it alternates the words excursion-free, see Figure [3] Let us denote these
excursions-free words by E;F;, 1 < k:

u = Fo(ElFl)(EQFQ) . (Eka)
Use the cocycle property for the Birkhoff sum. ([l

3.2.3. Bispecial words and accidents. Let = be an element of AN which does not
belong to K, then we define and denote:

e The word w is the maximal prefix of x such that w belongs to the language
of K. Thus we denote d(z,K) = D% 2 = z;...74... with w = 21...24.
Let us denote §(z) = d, and 6} = §(c* o H"(x)) for every integers k and n.
Note that § = 4.

e If there exists an integer b < d such that 6)(z) > d — b and &Y (z) = d — i for
all © < b, then we say that an accident appears at time b. The prefix of
ob(x) of length 67 is called the first accident of z of depth 47.

Remark that the word w is non-empty since every letter is in the language of K if
the substitution is primitive. Then, w is the unique word such that

r=wr',w e Ly,wzy ¢ Ly.

Figure {4] illustrates the next lemma.

Lemma 3.6. Let x be an infinite word not in K. Assume that §(z) = d and that the
first accident appears at time 0 < b < d then the accident ... xq_1 1S a bispecial
word of Ly .

Remark 7. If A has cardinality two, then xq . ..x4_1 is not right-special. Moreover,
and always if A has cardinality two, if x = o(z) and there is an accident at time 1
for z, then xg...x4_1 is not left-special. A
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F1GURE 4. Accidents-dashed lines indicate infinite words in K.

Definition 3.7. We define inductively
by =b=min{j > 1,d(o’z,K) < d(o”z,07(y))}
by = min{j > 1,d(c’ "2, K) < d(c7*"z, 07 (y'))}
by = min{j > 1,d(c7*" 22z K) < d(o7t+02z 67 (7))}

We also define B; = by + ...b; where by =0, and let us denote d; = 6(cPi—1x).

The integers B;,7 > 1 are called the times of accident, and the words xy, . .. Zp, 44,
are called accidents.

Proposition 3.8. Let H be a primitive, aperiodic and marked substitution. There
exists [(H) such that if W, denotes the set of bispecial words of length less than I(H),
then, every bispecial word can be written H"(v) with v € W, and n some integer.

Remark 8. We choose N to be large enough such that N >> I(H) holds.

We call A the dominating eigenvalue for the incidence matrix of H. Then Proposition
3.8 yields:

Corollary 3.9. There exist 0 < 8 < X\ and a finite set of positive numbers c, such
that the lengths of the bispecial words of Ly are of the form cA™ + O(6™), n € N.

Note that the numbers ¢ are the lengths of the words in W,

n+1)(SR+log D) can be as

3.2.4. main step: how to count excursions. Note that Z el
n>0
small as wanted if § increases because S.R goes to —oo. Then the goal is to prove

that for any § big enough C¢r is smaller than 1.

Cer is the contribution of infinitely many paths. Accidents are the source of increase
for Cex: they may be very long paths with contribution (S, (V')(z)) very close to 0.

We point out that in a Excursion-Free path, the Free part is easy to bound as we
did just above.
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By o™ By dy+b B, dtB
wo S <

FIGURE 5. Accidents inside an excursion-free word.

The main idea is to rank well all the Excursion paths. Instead of ranking them with
respect to their respective length we will rank them with respect to the accidents:

(1) We first rank all the excursion-words with respect to the number M of acci-
dent(s) that they have. We call Cex(M) the contribution of Excursion-Free
paths with exactly M accidents. Note that M > 1 because the entrance in
the excursion zone is only realized by an accident.

(2) Then, we rank the Excursion paths with M accident with respect of the
bispecial words involved. Recall Proposition [3.8] therefore all the bispecial
words involved have lenght > [(H) and are thus of the form H*(v) with
v E Wh.

(3) If we know the bispecial words Wi =1,... M involved the path (excursion
part) is of the form WYTyW?2T?.. . W™ .. Then, the linear recurrence of
K shows that there are a countable set of possible T%’s

T(0), T (1),...
with increasing sizes of the form

[T (G)| ~ [T (0)] + J W,

Then, the contribution of the path between two B; and B, is of the form

di+1 b1\’
d; +1 ’

Ranking the path as said above one manage to show that Cex(M) is bounded by a
quantity 7™ with 0 < r < 1 for 3 large enough. Actually, one may show that r — 0
if B — 4o00.
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