Freezing Phase Transition with ground state into a quasi-crystal

Renaud Leplaideur

UBO

date=today
In dynamical system a freezing transition phase occurs if the shape of the pressure function is of the form:

\[P(\beta V) \]

Our goal is to show how we can construct such transitions phase where after the transition the unique equilibrium state is supported into a quasi-crystal (question due to van Enter).
In dynamical system a freezing transition phase occurs if the shape of the pressure function is of the form:

Our goal is to show how we can construct such transitions phase where after the transition the unique equilibrium state is supported into a quasi-crystal (question due to van Enter).
Aim: to do a course which could interest physicists.

Different settings:

Dynamical system consider a time-action: \(X \) compact metric space, \(T: X \to X \) continuous. Goal = describe orbits \(x, T(x), T(T(x)) = T^2(x), \ldots \).

The quasi-crystal involved are included into a one-dimensional lattice as e.g. \(\{0,1\}^\mathbb{Z} \) or \(\{0,1\}^\mathbb{N} \).

They will come from a substitution (e.g. Thue-Morse or the Fibonacci substitutions).

Physicists some times consider 1-d lattices as uninteresting.
However, the Curie-Weiss model naturally leads to 1-d lattice. Instead of considering interaction with the closest neighbors one consider that every atom interact with every other one. This can make sense (NPN or PNP). For this model, settings in statistical mechanics and in ergodic theory are very close.
Another problem: share the same vocabulary

1. Gibbs measures,
2. phase transition,
3. pressure,
4. equilibrium states,
5. ...

but it is not clear that all these notions coincide in both areas.

Necessary to make precise similitudes and differences, especially when settings are close.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice Λ^N</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^N \rightarrow \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on Λ^N</td>
</tr>
<tr>
<td>Phase transition \approx discontinuity on $# \lim_{n \rightarrow +\infty} \text{Gibbs measure}$</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice Λ^N</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^N \to \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on Λ^N</td>
</tr>
<tr>
<td>Phase transition \sim discontinuity on $# \lim_{n \to +\infty}$ Gibbs measure</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice $\Lambda^\mathbb{N}$</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^\mathbb{N} \rightarrow \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on $\Lambda^\mathbb{N}$</td>
</tr>
<tr>
<td>Phase transition \approx discontinuity on $# \lim_{n \rightarrow +\infty} $ Gibbs measure</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice Λ^N</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^N \rightarrow \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on Λ^N</td>
</tr>
<tr>
<td>Phase transition \approx discontinuity on $\lim_{n \rightarrow +\infty}$ Gibbs measure</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice $\Lambda^\mathbb{N}$</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^\mathbb{N} \to \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on $\Lambda^\mathbb{N}$</td>
</tr>
<tr>
<td>Phase transition \approx discontinuity on $# \lim_{n \to +\infty}$ Gibbs measure</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice Λ^N</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^N \rightarrow \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on Λ^N</td>
</tr>
<tr>
<td>Phase transition \simeq discontinuity on $# \lim_{n \to +\infty}$ Gibbs measure</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice Λ^N</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^N \to \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on Λ^N</td>
</tr>
<tr>
<td>Phase transition \approx discontinuity on $# \lim_{n \to +\infty} \text{Gibbs measure}$</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Sites, finite box Λ^n</td>
<td>Infinite lattice $\Lambda_\mathbb{N}$</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^n \to \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on $\Lambda_\mathbb{N}$</td>
</tr>
<tr>
<td>Phase transition</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
<tr>
<td>\approx discontinuity on $# \lim_{n \to +\infty} \text{Gibbs measure}$</td>
<td></td>
</tr>
</tbody>
</table>

Renaud (UBO)

Renormalization
date=today

6 / 48
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sites, finite box Λ^n</td>
<td>infinite lattice Λ^N</td>
</tr>
<tr>
<td>Hamiltonian (Interaction between sites)</td>
<td>Potential (function $\Lambda^N \rightarrow \mathbb{R}$)</td>
</tr>
<tr>
<td>Gibbs measure on Λ^n</td>
<td>Gibbs measure on Λ^N</td>
</tr>
<tr>
<td>Phase transition \approx discontinuity on $# \lim_{n \rightarrow +\infty}$ Gibbs measure</td>
<td>Lack of analyticity of the pressure function</td>
</tr>
</tbody>
</table>
Plan of the course

1 Curie Weiss model vs Ergodic theory
 ▶ Link between 2 notions of Gibbs measures
 ▶ Link between phase transition in SM and # of ergodic components.

2 Basic notions & tools on Ergodic Theory
 ▶ Transfer Operator
 ▶ Inducing scheme (a way to detect freezing phase transitions).

Main issue : show contribution of paths.

3 A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1 Curie Weiss model vs Ergodic theory
 ▶ Link between 2 notions of Gibbs measures
 ▶ Link between phase transition in SM and # of ergodic components.

2 Basic notions & tools on Ergodic Theory
 ▶ Transfer Operator
 ▶ Inducing scheme (a way to detect freezing phase transitions).

Main issue : show contribution of paths.

3 A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 - Link between 2 notions of Gibbs measures
 - Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 - Transfer Operator
 - Inducing scheme (a way to detect freezing phase transitions).
 Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 - Link between 2 notions of Gibbs measures
 - Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 - Transfer Operator
 - Inducing scheme (a way to detect freezing phase transitions).
 Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 - Link between 2 notions of Gibbs measures
 - Link between phase transition in SM and \# of ergodic components.

2. Basic notions & tools on Ergodic Theory
 - Transfer Operator
 - Inducing scheme (a way to detect freezing phase transitions).

 Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 ▶ Link between 2 notions of Gibbs measures
 ▶ Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 ▶ Transfer Operator
 ▶ Inducing scheme (a way to detect freezing phase transitions).
 Main issue : show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 - Link between 2 notions of Gibbs measures
 - Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 - Transfer Operator
 - Inducing scheme (a way to detect freezing phase transitions).

 Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 ▶ Link between 2 notions of Gibbs measures
 ▶ Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 ▶ Transfer Operator
 ▶ Inducing scheme (a way to detect freezing phase transitions).

Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 - Link between 2 notions of Gibbs measures
 - Link between phase transition in SM and \# of ergodic components.

2. Basic notions & tools on Ergodic Theory
 - Transfer Operator
 - Inducing scheme (a way to detect freezing phase transitions).

 Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 ▶ Link between 2 notions of Gibbs measures
 ▶ Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 ▶ Transfer Operator
 ▶ Inducing scheme (a way to detect freezing phase transitions).
 Main issue : show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Plan of the course

1. Curie Weiss model vs Ergodic theory
 - Link between 2 notions of Gibbs measures
 - Link between phase transition in SM and # of ergodic components.

2. Basic notions & tools on Ergodic Theory
 - Transfer Operator
 - Inducing scheme (a way to detect freezing phase transitions).

Main issue: show contribution of paths.

3. A machinery to produce freezing phase transitions with ground state into a quasi-crystal. How to compute the contributions of paths.
Open question

How to extend the machinery to higher-dimensional case (\mathbb{Z}^d-action)?
N. Bedaride, P. Hubert & R. Leplaideur
Thermodynamic formalism and substitutions. arXiv :1511.03322

R. Bowen.
Equilibrium states and the ergodic theory of Anosov diffeomorphisms.
2nd ed. - 2008 by JR Chazottes.

Richard S. Ellis.
Entropy, large deviations, and statistical mechanics.
Reprint of the 1985 original.

Richard S. Ellis and Kongming Wang.
Limit theorems for the empirical vector of the Curie-Weiss-Potts model.

Hans-Otto Georgii.
Gibbs measures and phase transitions, volume 9 of de Gruyter Studies in Mathematics.
R. Leplaideur,
From local to global equilibrium states: thermodynamic formalism via an inducing scheme.

R. Leplaideur & F. Watbled
Ising model for dummies. Work in progress.

R. B. Griffiths and D. Ruelle.
Strict convexity (continuity) of the pressure in lattice systems.

Steven Orey.
Large deviations for the empirical field of Curie-Weiss models.

D. Ruelle.
Thermodynamic formalism.
The mathematical structures of equilibrium statistical mechanics.

Y. Sinaǐ.
Curie-Weiss model with respect to Ergodic theory
We consider the sets $\Lambda = \{-1, +1\}$ and $\Sigma := \Lambda^\mathbb{N}$.
A point $x = x_0, x_1, \ldots \in \Sigma$ = infinite word where the x_i are in Λ.
Notation $x = x_0x_1x_2\ldots$.

$x_i \in \Lambda$ can either be called a letter, or a digit or a symbol.
A point $w \in \Lambda^n$ is called a word of length $|w| = n$.
The concatenation of two words w and w' with $|w| < +\infty$ is the word $ww' = w_0 \ldots w_{n-1}w'_0w'_1\ldots$.

If $\omega_0 \ldots \omega_{n-1}$ is a finite word, we set

$$H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \omega_j \omega_i. \quad (1)$$

It is called the **Curie-Weiss Hamiltonian**.

The empirical magnetization for ω is $m_n(\omega) := \frac{1}{n} \sum_{j=0}^{n-1} \omega_j$.

$$H_n(\omega) = -\frac{n}{2} (m_n(\omega))^2.$$
If $\omega_0 \ldots \omega_{n-1}$ is a finite word, we set

$$H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \omega_j \omega_i.$$ \hspace{1cm} (1)

It is called the **Curie-Weiss Hamiltonian**.

The **empirical magnetization** for ω is $m_n(\omega) := \frac{1}{n} \sum_{j=0}^{n-1} \omega_j$.

$$H_n(\omega) = -\frac{n}{2} (m_n(\omega))^2.$$
Set

- ρ is the uniform measure on $\{-1, 1\}$, i.e. $\rho(\{1\}) = \rho(\{-1\}) = \frac{1}{2}$,
- $\mathbb{P} := \rho^{\otimes N}$ the product measure on Σ

Definition

probabilistic Gibbs measure (PGM for short) $\mu_{n, \beta}$ on Λ^n,

$$\mu_{n, \beta}(d\omega) := \frac{e^{-\beta \cdot H_n(\omega)}}{Z_{n, \beta}} \mathbb{P}(d\omega), \quad (2)$$

where $Z_{n, \beta}$ is the normalization factor

$$Z_{n, \beta} = \frac{1}{2^n} \sum_{\omega', \; |\omega'| = n} e^{-\beta \cdot H_n(\omega')}.$$
Set

- ρ is the uniform measure on $\{-1, 1\}$, i.e. $\rho(\{1\}) = \rho(\{-1\}) = \frac{1}{2}$,
- $\mathbb{P} := \rho \otimes N$ the product measure on Σ

Definition

Probabilistic Gibbs measure (PGM for short) $\mu_{n, \beta}$ on Λ^n,

$$\mu_{n, \beta}(d\omega) := \frac{e^{-\beta \cdot H_n(\omega)}}{Z_{n, \beta}} \mathbb{P}(d\omega),$$

where $Z_{n, \beta}$ is the normalization factor

$$Z_{n, \beta} = \frac{1}{2^n} \sum_{\omega', |\omega'|=n} e^{-\beta \cdot H_n(\omega')}.$$
Set
- ρ is the uniform measure on $\{-1, 1\}$, i.e. $\rho(\{1\}) = \rho(\{-1\}) = \frac{1}{2}$,
- $\mathbb{P} := \rho^\otimes \mathbb{N}$ the product measure on Σ

Definition

probabilistic Gibbs measure (PGM for short) $\mu_{n, \beta}$ on Λ^n,

$$\mu_{n, \beta}(d\omega) := \frac{e^{-\beta \cdot H_n(\omega)}}{Z_{n, \beta}} \mathbb{P}(d\omega),$$ \hspace{1cm} (2)

where $Z_{n, \beta}$ is the normalization factor

$$Z_{n, \beta} = \frac{1}{2^n} \sum_{\omega', \ |\omega'|=n} e^{-\beta \cdot H_n(\omega')}.$$
The shift map \(\sigma \) is defined on \(\Sigma \) by

\[
\sigma(x_0 x_1 x_2 \ldots) = x_1 x_2 \ldots
\]

Definition

A measure \(\tilde{\mu} \) on \(\Lambda^N \) is said to be \(\sigma \)-invariant if for every Borel set \(B \),

\[
\tilde{\mu}(\sigma^{-1}(B)) = \tilde{\mu}(B).
\]

A cylinder (of length \(n \)) is denoted by \([x_0 \ldots x_{n-1}]\). It is the set of points \(y \) such that \(y_i = x_i \) for \(i = 0, \ldots, n - 1 \). A finite word \(x = x_0 \ldots x_{n-1} \) generates a cylinder \([x]\).

Claim

Cylinders generate Borel \(\sigma \)-algebra.

Therefore \(\tilde{\mu} \) is \(\sigma \)-invariant if and only if for every finite word \(x \),

\[
\tilde{\mu}([0x]) + \tilde{\mu}([1x]) = \tilde{\mu}([x]).
\]
The **shift map** \(\sigma \) is defined on \(\Sigma \) by

\[
\sigma(x_0x_1x_2 \ldots) = x_1x_2 \ldots.
\]

Definition

A measure \(\tilde{\mu} \) on \(\Lambda^\mathbb{N} \) is said to be \(\sigma \)-invariant if for every Borel set \(B \),

\[
\tilde{\mu}(\sigma^{-1}(B)) = \tilde{\mu}(B).
\]

A cylinder (of length \(n \)) is denoted by \([x_0 \ldots x_{n-1}]\). It is the set of points \(y \) such that \(y_i = x_i \) for \(i = 0, \ldots, n-1 \). A finite word \(x = x_0 \ldots x_{n-1} \) generates a cylinder \([x]\).

Claim

Cylinders generate Borel \(\sigma \)-algebra.

Therefore \(\tilde{\mu} \) is \(\sigma \)-invariant if and only if for every finite word \(x \),

\[
\tilde{\mu}([0x]) + \tilde{\mu}([1x]) = \tilde{\mu}([x]).
\]
The shift map σ is defined on Σ by

$$\sigma(x_0x_1x_2\ldots) = x_1x_2\ldots.$$

Definition

A measure $\tilde{\mu}$ on $\Lambda^\mathbb{N}$ is said to be σ-invariant if for every Borel set B,

$$\tilde{\mu}(\sigma^{-1}(B)) = \tilde{\mu}(B).$$

A cylinder (of length n) is denoted by $[x_0\ldots x_{n-1}]$. It is the set of points y such that $y_i = x_i$ for $i = 0, \ldots, n-1$. A finite word $x = x_0\ldots x_{n-1}$ generates a cylinder $[x]$.

Claim

Cylinders generate Borel σ-algebra.

Therefore $\tilde{\mu}$ is σ-invariant if and only if for every finite word x,

$$\tilde{\mu}([0x]) + \tilde{\mu}([1x]) = \tilde{\mu}([x]).$$
The shift map σ is defined on Σ by

$$\sigma(x_0x_1x_2\ldots) = x_1x_2\ldots.$$

Definition

A measure $\tilde{\mu}$ on $\Lambda^\mathbb{N}$ is said to be σ-invariant if for every Borel set B,

$$\tilde{\mu}(\sigma^{-1}(B)) = \tilde{\mu}(B).$$

A cylinder (of length n) is denoted by $[x_0 \ldots x_{n-1}]$. It is the set of points y such that $y_i = x_i$ for $i = 0, \ldots, n-1$. A finite word $x = x_0 \ldots x_{n-1}$ generates a cylinder $[x]$.

Claim

Cylinders generate Borel σ-algebra.

Therefore $\tilde{\mu}$ is σ-invariant if and only if for every finite word x,

$$\tilde{\mu}([0x]) + \tilde{\mu}([1x]) = \tilde{\mu}([x]).$$
The shift map σ is defined on Σ by

$$\sigma(x_0x_1x_2\ldots) = x_1x_2\ldots.$$

Definition

A measure $\tilde{\mu}$ on $\Lambda^\mathbb{N}$ is said to be σ-invariant if for every Borel set B,

$$\tilde{\mu}(\sigma^{-1}(B)) = \tilde{\mu}(B).$$

A cylinder (of length n) is denoted by $[x_0\ldots x_{n-1}]$. It is the set of points y such that $y_i = x_i$ for $i = 0,\ldots,n-1$. A finite word $x = x_0\ldots x_{n-1}$ generates a cylinder $[x]$.

Claim

Cylinders generate Borel σ-algebra.

Therefore $\tilde{\mu}$ is σ-invariant if and only if for every finite word x,

$$\tilde{\mu}([0x]) + \tilde{\mu}([1x]) = \tilde{\mu}([x]).$$
Definition

Let \(\phi : \Sigma \to \mathbb{R} \) be Lipschitz continuous \((\star) \). An invariant measure \(\tilde{\mu} \) is said to be a dynamical Gibbs measure \(\text{(DGM for short)} \) if there exist \(C = C(\phi) > 0 \) and \(P \) such that for \(x \in \Sigma \) and every \(n \),

\[
e^{-C} \leq \frac{\tilde{\mu}([x_0 \ldots x_{n-1}])}{e^{S_n(\phi)(x) -nP}} \leq e^C,
\]

(3)

where \(S_n(\phi)(x) \) stands for \(\phi(x) + \phi \circ \sigma(x) + \ldots + \phi \circ \sigma^{n-1}(x) \).

\(\star \)
Definition
For $\phi : \Sigma \to \mathbb{R}$ continuous and $\beta > 0$, the pressure function is defined by

$$P(\beta \cdot \phi) := \sup_{\mu} \left\{ h_\mu + \beta \int \phi \, d\mu \right\},$$

(4)

A measure which realizes the maximum is called an equilibrium state for ϕ.

Theorem (Ruelle-Griffiths)
If ϕ is Lipschitz continuous then

1. there exists a unique equilibrium state for $\beta \cdot \phi$,
2. It is Dynamical Gibbs measure,
3. $\beta \to P(\beta \cdot \phi)$ is analytic.
Definition

For $\phi : \Sigma \to \mathbb{R}$ continuous and $\beta > 0$, the pressure function is defined by

$$P(\beta \cdot \phi) := \sup_{\mu} \left\{ h_\mu + \beta \int \phi \, d\mu \right\}, \quad (4)$$

A measure which realizes the maximum is called an equilibrium state for ϕ.

Theorem (Ruelle-Griffiths)

If ϕ is Lipschitz continuous then

1. there exists a unique equilibrium state for $\beta \cdot \phi$,
2. It is Dynamical Gibbs measure,
3. $\beta \to P(\beta \cdot \phi)$ is analytic.
Definition

For \(\phi : \Sigma \rightarrow \mathbb{R} \) continuous and \(\beta > 0 \), the *pressure function* is defined by

\[
P(\beta.\phi) := \sup \left\{ h_\mu + \beta \int \phi \, d\mu \right\},
\]

(4)

A measure which realizes the maximum is called an equilibrium state for \(\phi \).

Theorem (Ruelle-Griffiths)

If \(\phi \) is Lipschitz continuous then

1. there exists a unique equilibrium state for \(\beta.\phi \),
2. It is Dynamical Gibbs measure,
3. \(\beta \rightarrow P(\beta.\phi) \) is analytic.
Definition

For \(\phi : \Sigma \to \mathbb{R} \) continuous and \(\beta > 0 \), the *pressure function* is defined by

\[
P(\beta \cdot \phi) := \sup_{\mu} \left\{ h_\mu + \beta \int \phi \, d\mu \right\}, \tag{4}
\]

A measure which realizes the maximum is called an equilibrium state for \(\phi \).

Theorem (Ruelle-Griffiths)

If \(\phi \) is Lipschitz continuous then

1. *there exists a unique equilibrium state for \(\beta \cdot \phi \),*
2. *It is Dynamical Gibbs measure,*
3. *\(\beta \to P(\beta \cdot \phi) \) is analytic.*
Theorem (Orey, LW)

Let ξ_β be the unique point in $[0, 1]$ which realizes the maximum for $\varphi_1(x) := \log(\cosh(\beta x)) - \frac{\beta}{2} x^2$. Let $\tilde{\mu}_b^+$ and $\tilde{\mu}_b^-$ be the dynamical Gibbs measures for $b.1_{[+1]}$ and $b.1_{[-1]}$ respectively. Then

$$
\mu_{n,\beta} \xrightarrow{w} n \to +\infty \begin{cases}
\tilde{\mu}_0 & \text{if } \beta \leq 1, \\
\frac{1}{2} \left[\tilde{\mu}_{2\beta,\xi_\beta}^+ + \tilde{\mu}_{2\beta,\xi_\beta}^- \right] & \text{if } \beta > 1.
\end{cases}
$$

(5)

Actually $\mu_{n,\beta} \to \frac{1}{2} \left[\tilde{\mu}_{2\beta,\xi_\beta}^+ + \tilde{\mu}_{2\beta,\xi_\beta}^- \right]$ for every $\beta > 0$ since $\xi_\beta \equiv 0$ for $\beta \leq 1$.

It is said that there is a phase transition at $\beta = 1$.

Theorem (Orey, LW)

Let ξ_β be the unique point in $[0,1]$ which realizes the maximum for $\varphi_I(x) := \log(\cosh(\beta x)) - \frac{\beta}{2} x^2$. Let $\tilde{\mu}_{b}^+$ and $\tilde{\mu}_{b}^-$ be the dynamical Gibbs measures for $b.1_{[+1]}$ and $b.1_{[-1]}$ respectively. Then

$$
\mu_{n,\beta} \xrightarrow{w} n \rightarrow +\infty \begin{cases}
\tilde{\mu}_0 & \text{if } \beta \leq 1, \\
\frac{1}{2} \left[\tilde{\mu}_{2\beta}^+ \xi_\beta + \tilde{\mu}_{2\beta}^- \xi_\beta \right] & \text{if } \beta > 1.
\end{cases}
$$

(5)

Actually $\mu_{n,\beta} \rightarrow \frac{1}{2} \left[\tilde{\mu}_{2\beta}^+ \xi_\beta + \tilde{\mu}_{2\beta}^- \xi_\beta \right]$ for every $\beta > 0$ since $\xi_\beta \equiv 0$ for $\beta \leq 1$.

It is said that there is a phase transition at $\beta = 1$.

Renaud (UBO)
Renormalization
date=today 18 / 48
Theorem (Orey, LW)

Let \(\xi_\beta \) be the unique point in \([0, 1]\) which realizes the maximum for \(\varphi_1(x) := \log(\cosh(\beta \cdot x)) - \frac{\beta}{2} x^2 \). Let \(\tilde{\mu}_b^+ \) and \(\tilde{\mu}_b^- \) be the dynamical Gibbs measures for \(b.1_{[+1]} \) and \(b.1_{[-1]} \) respectively. Then

\[
\mu_{n, \beta} \xrightarrow{w} n \to +\infty \begin{cases}
\tilde{\mu}_0 & \text{if } \beta \leq 1, \\
\frac{1}{2} \left[\tilde{\mu}_2^+ \cdot \xi_\beta + \tilde{\mu}_2^- \cdot \xi_\beta \right] & \text{if } \beta > 1.
\end{cases}
\] (5)

Actually \(\mu_{n, \beta} \to \frac{1}{2} \left[\tilde{\mu}_2^+ \cdot \xi_\beta + \tilde{\mu}_2^- \cdot \xi_\beta \right] \) for every \(\beta > 0 \) since \(\xi_\beta \equiv 0 \) for \(\beta \leq 1 \).

It is said that there is a phase transition at \(\beta = 1 \).
To prove $\mu_{n,\beta} \rightarrow_{n \rightarrow +\infty} \tilde{\mu}$ it is sufficient to prove
$\lim_{n \rightarrow +\infty} \mu_{n,\beta}([\omega]) = \tilde{\mu}([\omega])$ for any cylinder ω.

We will prove:

$$
\lim_{n \rightarrow \infty} \mu_{n,\beta}([\omega_0 \ldots \omega_{p-1}]) = \begin{cases}
\frac{1}{2^p} & \text{if } \beta \leq 1, \\
1 & \frac{1}{2} (f(\xi_\beta) + f(-\xi_\beta)) & \text{if } \beta > 1,
\end{cases}
$$

(6)

where

$$
f(y) = \frac{e^{\beta y} S_p(\omega)}{(e^{\beta y} + e^{-\beta y})^p}.
$$
To prove $\mu_{n,\beta} \rightarrow_{n \rightarrow +\infty} \tilde{\mu}$ it is sufficient to prove $\lim_{n \rightarrow +\infty} \mu_{n,\beta}([\omega]) = \tilde{\mu}([\omega])$ for any cylinder ω.

We will prove:

$$
\lim_{n \rightarrow \infty} \mu_{n,\beta}([\omega_0 \ldots \omega_{p-1}]) = \begin{cases}
\frac{1}{2p} & \text{if } \beta \leq 1, \\
\frac{1}{2} (f(\xi_\beta) + f(-\xi_\beta)) & \text{if } \beta > 1,
\end{cases}
$$

(6)

where

$$
f(y) = \frac{e^{\beta y} S_p(\omega)}{(e^{\beta y} + e^{-\beta y})^p}.
$$
To prove $\mu_{n,\beta} \to_{n \to +\infty} \tilde{\mu}$ it is sufficient to prove $\lim_{n \to +\infty} \mu_{n,\beta}([\omega]) = \tilde{\mu}([\omega])$ for any cylinder ω.

We will prove:

$$\lim_{n \to \infty} \mu_{n,\beta}([\omega_0 \ldots \omega_{p-1}]) = \begin{cases} \frac{1}{2^p} & \text{if } \beta \leq 1, \\ \frac{1}{2} (f(\xi_\beta) + f(-\xi_\beta)) & \text{if } \beta > 1, \end{cases}$$ \hspace{1cm} (6)

where

$$f(y) = \frac{e^{\beta y} S_p(\omega)}{(e^{\beta y} + e^{-\beta y})^p}.$$
A more general result: Curie Weiss Potts model

Holds for $\Lambda = \{\theta^1, \ldots, \theta^q\}$ with $q > 2$.

$$H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} 1_{\omega_j = \omega_i}. \quad (7)$$

Set $L_n(\omega) = (L_{n,1}(\omega), \cdots, L_{n,q}(\omega))$ where

$$L_{n,k}(\omega) = \sum_{i=0}^{n-1} 1_{\omega_i = \theta^k} = \text{number of digits of } \omega = \theta^k,$$

$$\sum_{i,j=0}^{n-1} 1_{\omega_j = \omega_i} = \sum_{k=1}^{q} \left(\sum_{i=0}^{n-1} 1_{\omega_i = \theta^k} \right)^2 = \|L_n(\omega)\|^2,$$

Define the Probabilistic Gibbs measure $\mu_{n,\beta}$ on Σ_q by

$$\mu_{n,\beta}(d\omega) := \frac{e^{-\beta \cdot H_n(\omega)}}{Z_{n,\beta}} \mathbb{P}(d\omega) = \frac{e^{\beta \|L_n(\omega)\|^2}}{Z_{n,\beta}} \mathbb{P}(d\omega), \quad (8)$$

where $Z_{n,\beta}$ is the normalization factor.
A more general result: Curie Weiss Potts model

Holds for \(\Lambda = \{ \theta^1, \ldots, \theta^q \} \) with \(q > 2 \).

\[H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i} \tag{7} \]

Set \(L_n(\omega) = (L_{n,1}(\omega), \ldots, L_{n,q}(\omega)) \) where

\[L_{n,k}(\omega) = \sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} = \text{number of digits of } \omega = \theta^k, \]

\[\sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i} = \sum_{k=1}^{q} \left(\sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} \right)^2 = \| L_n(\omega) \|^2, \]

Define the Probabilistic Gibbs measure \(\mu_{n,\beta} \) on \(\Sigma_q \) by

\[\mu_{n,\beta}(d\omega) := \frac{e^{-\beta H_n(\omega)}}{Z_{n,\beta}} \mathbb{P}(d\omega) = \frac{e^{\beta \| L_n(\omega) \|^2}}{Z_{n,\beta}} \mathbb{P}(d\omega), \tag{8} \]

where \(Z_{n,\beta} \) is the normalization factor.
A more general result: Curie Weiss Potts model

Holds for \(\Lambda = \{\theta^1, \ldots, \theta^q\} \) with \(q > 2 \).

\[
H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i}.
\]

(7)

Set \(L_n(\omega) = (L_{n,1}(\omega), \ldots, L_{n,q}(\omega)) \) where

\[
L_{n,k}(\omega) = \sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} = \text{number of digits of } \omega = \theta^k,
\]

\[
\sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i} = \sum_{k=1}^{q} \left(\sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} \right)^2 = \|L_n(\omega)\|^2,
\]

Define the Probabilistic Gibbs measure \(\mu_{n,\beta} \) on \(\Sigma_q \) by

\[
\mu_{n,\beta}(d\omega) := \frac{e^{-\beta H_n(\omega)}}{Z_{n,\beta}} \mathbb{P}(d\omega) = \frac{e^{\beta \|L_n(\omega)\|^2}}{Z_{n,\beta}} \mathbb{P}(d\omega),
\]

(8)

where \(Z_{n,\beta} \) is the normalization factor.
A more general result: Curie Weiss Potts model

Holds for \(\Lambda = \{\theta^1, \ldots, \theta^q\} \) with \(q > 2 \).

\[
H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i}.
\] (7)

Set \(L_n(\omega) = (L_{n,1}(\omega), \ldots, L_{n,q}(\omega)) \) where

\[
L_{n,k}(\omega) = \sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} = \text{number of digits of } \omega = \theta^k,
\]

\[
\sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i} = \sum_{k=1}^{q} \left(\sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} \right)^2 = \|L_n(\omega)\|^2.
\]

Define the Probabilistic Gibbs measure \(\mu_{n,\beta} \) on \(\Sigma_q \) by

\[
\mu_{n,\beta}(d\omega) := \frac{e^{-\beta \cdot H_n(\omega)}}{Z_{n,\beta}} \mathbb{P}(d\omega) = \frac{e^{\beta \|L_n(\omega)\|^2}}{Z_{n,\beta}} \mathbb{P}(d\omega),
\] (8)

where \(Z_{n,\beta} \) is the normalization factor.
A more general result: Curie Weiss Potts model

Holds for $\Lambda = \{\theta^1, \ldots, \theta^q\}$ with $q > 2$.

$$H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i}. \quad (7)$$

Set $L_n(\omega) = (L_{n,1}(\omega), \ldots, L_{n,q}(\omega))$ where

$$L_{n,k}(\omega) = \sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} = \text{number of digits of} \, \omega = \theta^k,$$

$$\sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i} = \sum_{k=1}^{q} \left(\sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} \right)^2 = \|L_n(\omega)\|^2.$$

Define the Probabilistic Gibbs measure $\mu_{n,\beta}$ on Σ_q by

$$\mu_{n,\beta}(d\omega) := \frac{e^{-\beta H_n(\omega)}}{Z_{n,\beta}} \mathbb{P}(d\omega) = \frac{e^{\beta \frac{1}{2n}\|L_n(\omega)\|^2}}{Z_{n,\beta}} \mathbb{P}(d\omega), \quad (8)$$

where $Z_{n,\beta}$ is the normalization factor.
A more general result: Curie Weiss Potts model

Holds for \(\Lambda = \{\theta^1, \ldots, \theta^q\} \) with \(q > 2 \).

\[
H_n(\omega) := -\frac{1}{2n} \sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i}.
\] (7)

Set \(L_n(\omega) = (L_{n,1}(\omega), \ldots, L_{n,q}(\omega)) \) where

\[
L_{n,k}(\omega) = \sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} = \text{number of digits of } \omega = \theta^k,
\]

\[
\sum_{i,j=0}^{n-1} \mathbb{1}_{\omega_j = \omega_i} = \sum_{k=1}^{q} \left(\sum_{i=0}^{n-1} \mathbb{1}_{\omega_i = \theta^k} \right)^2 = \|L_n(\omega)\|^2,
\]

Define the Probabilistic Gibbs measure \(\mu_{n,\beta} \) on \(\Sigma_q \) by

\[
\mu_{n,\beta}(d\omega) := \frac{e^{-\beta H_n(\omega)}}{Z_{n,\beta}} \mathbb{P}(d\omega) = \frac{e^{\beta \|L_n(\omega)\|^2}}{Z_{n,\beta}} \mathbb{P}(d\omega),
\] (8)

where \(Z_{n,\beta} \) is the normalization factor.
Theorem (Weak convergence for the CWP model)

For $1 \leq k \leq q$, $b \in \mathbb{R}$, let $\tilde{\mu}_b^k$ be the dynamical Gibbs measure for $b \mathbb{1}_{[\theta^k]}$. Let $\beta_c = \frac{2(q-1) \log(q-1)}{q-2}$. For $0 < \beta < \beta_c$ set $s_\beta = 0$ and for $\beta \geq \beta_c$ let s_β be the largest solution of the equation

$$s = \frac{e^{\beta s} - 1}{e^{\beta s} + q - 1}.$$ \hspace{1cm} (9)

Then,

$$\rho \otimes N = \tilde{\mu}_0 \quad \text{if } 0 < \beta < \beta_c,$$

$$\frac{1}{q} \sum_{k=1}^{q} \tilde{\mu}_b^k \quad \text{if } \beta = \beta_c,$$

$$\frac{A \tilde{\mu}_0 + B \sum_{k=1}^{q} \tilde{\mu}_b^k \cdot s_\beta}{A + qB} \quad \text{if } \beta = \beta_c.$$ \hspace{1cm} (10)
Construction of dynamical (local) equilibrium states
Recall : Gibbs measure $\forall x \in \Sigma$, $\forall n$,

$$e^{-c} \leq \frac{\tilde{\mu}([x_0 \ldots x_{n-1}])}{e^{S_n(\phi)(x)-nP}} \leq e^{c}.$$

Pressure + equilibrium state :

$$\mathcal{P}(\beta, \phi) := \sup_{\mu} \left\{ h_{\mu} + \beta \int \phi \, d\mu \right\}.$$

Ruelle-Griffiths theorem : If ϕ is Lipschitz continuous unique equilibrium state= Gibbs state + $P(\beta)$ analytic.

\implies to get equilibrium state one constructs Gibbs measures!
Recall : Gibbs measure $\forall x \in \Sigma, \forall n,$

$$e^{-C} \leq \frac{\tilde{\mu}(\{x_0 \cdots x_{n-1}\})}{e^{S_n(\phi)(x) -nP}} \leq e^C.$$

Pressure + equilibrium state :

$$P(\beta.\phi) := \sup_{\mu} \left\{ h_\mu + \beta \int \phi \, d\mu \right\}.$$

Ruelle-Griffiths theorem : If ϕ is Lipschitz continuous unique equilibrium state= Gibbs state + $P(\beta)$ analytic.

\implies to get equilibrium state one constructs Gibbs measures!
Recall: Gibbs measure $\forall x \in \Sigma, \forall n$,

$$e^{-c} \leq \frac{\tilde{\mu}([x_0 \cdots x_{n-1}])}{e^{S_n(\phi)(x)-nP}} \leq e^c.$$

Pressure + equilibrium state:

$$\mathcal{P}(\beta.\phi) := \sup_{\mu} \left\{ h_{\mu} + \beta \int \phi \, d\mu \right\}.$$

Ruelle-Griffiths theorem: If ϕ is Lipschitz continuous unique equilibrium state = Gibbs state + $P(\beta)$ analytic.

\implies to get equilibrium state one constructs Gibbs measures!
Recall: Gibbs measure \(\forall x \in \Sigma, \forall n, \)

\[
e^{-c} \leq \frac{\tilde{\mu}([x_0 \cdots x_{n-1}])}{e^{S_n(\phi)(x)-nP}} \leq e^c.
\]

Pressure + equilibrium state:

\[
P(\beta.\phi) := \sup_{\mu} \left\{ h_\mu + \beta \int \phi \, d\mu \right\}.
\]

Ruelle-Griffiths theorem: If \(\phi \) is Lipschitz continuous unique equilibrium state = Gibbs state + \(P(\beta) \) analytic.

\(\implies \) to get equilibrium state one constructs Gibbs measures!
Definition

Transfer operator for potential \mathcal{A},

$$
\mathcal{L}_\mathcal{A}(\varphi)(x_0x_1\cdots) = \sum_{y,\sigma(y)=x} e^{\mathcal{A}(y)} \varphi(y)
= \sum_{a,a_0 \in \mathcal{A}} e^{\mathcal{A}(ax_0x_1x_2,\cdots)} \varphi(ax_0x_1x_2\cdots).
$$

Also called Ruelle-Perron-Frobenius operator.

1. $\mathcal{L}_\mathcal{A}$ acts on continuous and Lipschitz functions.
2. Spectral radius $\lambda_\mathcal{A}$ is an eigenvalue for $\mathcal{L}_\mathcal{A}$ and $\mathcal{L}_\mathcal{A}^*$.
3. If $\mathcal{L}_\mathcal{A}(\nu_\mathcal{A}) = \lambda_\mathcal{A} \nu_\mathcal{A}$ and $\mathcal{L}_\mathcal{A}(H_\mathcal{A}) = \lambda_\mathcal{A} H_\mathcal{A}$, then
 - $\mu_\mathcal{A} := H_\mathcal{A} \nu_\mathcal{A}$ is Gibbs measure.
 - $\lambda_\mathcal{A} = e^{P(A)}$.

Spectral Gap \Rightarrow Analyticity.
Definition

Transfer operator for potential A,

\[
\mathcal{L}_A(\varphi)(x_0x_1\cdots) = \sum_{y, \sigma(y) = x} e^A(y) \varphi(y) = \sum_{a, ax_0 \in A} e^A(ax_0x_1x_2\cdots) \varphi(ax_0x_1x_2\cdots).
\]

Also called Ruelle-Perron-Frobenius operator.

1. \mathcal{L}_A acts on continuous and Lipschitz functions.
2. Spectral radius λ_A is an eigenvalue for \mathcal{L}_A and \mathcal{L}_A^*.
3. If $\mathcal{L}_A(\nu_A) = \lambda_A \nu_A$ and $\mathcal{L}_A(H_A) = \lambda_A H_A$, then
 - $\mu_A := H_A \nu_A$ is Gibbs measure.
 - $\lambda_A = e^{\mathcal{P}(A)}$.

Spectral Gap \implies Analyticity.
Definition

Transfer operator for potential \(A \),

\[
\mathcal{L}_A(\varphi)(x_0 x_1 \cdots) = \sum_{y, \sigma(y) = x} e^{A(y)} \varphi(y)
\]

\[
= \sum_{a, ax_0 \in A} e^{A(ax_0 x_1 x_2 \cdots)} \varphi(ax_0 x_1 x_2 \cdots).
\]

Also called Ruelle-Perron-Frobenius operator.

1. \(\mathcal{L}_A \) acts on continuous and Lipschitz functions.

2. Spectral radius \(\lambda_A \) is an eigenvalue for \(\mathcal{L}_A \) and \(\mathcal{L}_A^* \).

3. If \(\mathcal{L}_A(\nu_A) = \lambda_A \nu_A \) and \(\mathcal{L}_A(H_A) = \lambda_A H_A \), then
 - \(\mu_A := H_A \nu_A \) is Gibbs measure.
 - \(\lambda_A = e^{\mathcal{P}(A)} \).

Spectral Gap \(\implies \) Analyticity.
Definition

Transfer operator for potential A,

$$\mathcal{L}_A(\varphi)(x_0x_1\cdots) = \sum_{y,\sigma(y)=x} e^{A(y)} \varphi(y)$$

$$= \sum_{a,ax_0\in A} e^{A(ax_0x_1x_2\cdots)} \varphi(ax_0x_1x_2\cdots).$$

Also called Ruelle-Perron-Frobenius operator.

1. \mathcal{L}_A acts on continuous and Lipschitz functions.
2. Spectral radius λ_A is an eigenvalue for \mathcal{L}_A and \mathcal{L}_A^*.
3. If $\mathcal{L}_A(\nu_A) = \lambda_A \nu_A$ and $\mathcal{L}_A(H_A) = \lambda_A H_A$, then

 $\mu_A := H_A \nu_A$ is Gibbs measure.
 $\lambda_A = e^{\mathcal{P}(A)}$.

Spectral Gap \iff Analyticity.
Definition

Transfer operator for potential A,

$$\mathcal{L}_A(\varphi)(x_0x_1\cdots) = \sum_{y, \sigma(y) = x} e^{A(y)} \varphi(y)$$

$$= \sum_{a, ax_0 \in \mathcal{A}} e^{A(ax_0x_1x_2, \cdots)} \varphi(ax_0x_1x_2\cdots).$$

Also called Ruelle-Perron-Frobenius operator.

1. \mathcal{L}_A acts on continuous and Lipschitz functions.
2. Spectral radius λ_A is an eigenvalue for \mathcal{L}_A and \mathcal{L}_A^*.
3. If $\mathcal{L}_A(\nu_A) = \lambda_A \nu_A$ and $\mathcal{L}_A(H_A) = \lambda_A H_A$, then
 - $\mu_A := H_A \nu_A$ is Gibbs measure.
 - $\lambda_A = e^{\mathcal{P}(A)}$.

Spectral Gap \iff Analyticity.
Definition

Transfer operator for potential A,

$$\mathcal{L}_A(\varphi)(x_0x_1\cdots) = \sum_{y, \sigma(y)=x} e^{A(y)} \varphi(y)$$

$$= \sum_{a, ax_0 \in \mathcal{A}} e^{A(ax_0x_1x_2\cdots)} \varphi(ax_0x_1x_2\cdots).$$

Also called Ruelle-Perron-Frobenius operator.

1. \mathcal{L}_A acts on continuous and Lipschitz functions.
2. Spectral radius λ_A is an eigenvalue for \mathcal{L}_A and \mathcal{L}_A^*.
3. If $\mathcal{L}_A(\nu_A) = \lambda_A \nu_A$ and $\mathcal{L}_A(H_A) = \lambda_A H_A$, then
 - $\mu_A := H_A \nu_A$ is Gibbs measure.
 - $\lambda_A = e^{\mathcal{P}(A)}$.

Spectral Gap \Longrightarrow Analyticity.
Definition

Transfer operator for potential A,

$$
\mathcal{L}_A(\varphi)(x_0 x_1 \cdots) = \sum_{y, \sigma(y) = x} e^{A(y)} \varphi(y)
$$

$$
= \sum_{a, a x_0 \in A} e^{A(ax_0 x_1 x_2 \cdots)} \varphi(ax_0 x_1 x_2 \cdots).
$$

Also called Ruelle-Perron-Frobenius operator.

1. \mathcal{L}_A acts on continuous and Lipschitz functions.
2. Spectral radius λ_A is an eigenvalue for \mathcal{L}_A and \mathcal{L}_A^*.
3. If $\mathcal{L}_A(\nu_A) = \lambda_A \nu_A$ and $\mathcal{L}_A(H_A) = \lambda_A H_A$, then
 - $\mu_A := H_A \nu_A$ is Gibbs measure.
 - $\lambda_A = e^{\mathcal{P}(A)}$.

Spectral Gap \implies Analyticity.
Definition

Transfer operator for potential A,

$$\mathcal{L}_A(\varphi)(x_0x_1\cdots) = \sum_{y, \sigma(y)=x} e^{A(y)} \varphi(y)$$

$$= \sum_{a, ax_0 \in \mathcal{A}} e^{A(ax_0x_1x_2,\ldots)} \varphi(ax_0x_1x_2\ldots).$$

Also called Ruelle-Perron-Frobenius operator.

1. \mathcal{L}_A acts on continuous and Lipschitz functions.

2. Spectral radius λ_A is an eigenvalue for \mathcal{L}_A and $\mathcal{L}_A^*.$

3. If $\mathcal{L}_A(\nu_A) = \lambda_A \nu_A$ and $\mathcal{L}_A(H_A) = \lambda_A H_A,$ then
 - $\mu_A := H_A \nu_A$ is Gibbs measure.
 - $\lambda_A = e^{\mathcal{P}(A)}.$

Spectral Gap \implies Analyticity.
If A only depends on 2 coordinates $A(x_0x_1x_2\ldots) = A(x_0, x_1)$, then \mathcal{L}_A is a 2×2 matrix.

Theorem

(Perron-Frobenius) Let $B = (b_{ij})$ be a $d \times d$ matrix with positive entries. Then, the spectral radius of B, say λ, is a simple dominated eigenvalue. The associated eigenspace is generated by some “positive” vector $u = (u_1, \cdots, u_d)$ with $u_i > 0$.
If \(A \) only depends on 2 coordinates \(A(x_0x_1x_2\ldots) = A(x_0, x_1) \), then \(\mathcal{L}_A \) is a \(2 \times 2 \) matrix.

Theorem

(Perron-Frobenius) Let \(B = (b_{ij}) \) be a \(d \times d \) matrix with positive entries. Then, the spectral radius of \(B \), say \(\lambda \), is a simple dominated eigenvalue. The associated eigenspace is generated by some “positive” vector \(u = (u_1, \ldots, u_d) \) with \(u_i > 0 \).
Let $M = (M_{ij})$ be the matrix with entries $e^{A(i,j)}$. Let $r = (r_1, \ldots, r_d)$ be the right-eigenvector associated to λ with normalization $\sum r_i = 1$. Let $l = (l_1, \ldots, l_d)$ be the left-eigenvector for λ with renormalization $\sum l_i r_i = 1$. Then, r is the eigenmeasure ν_A and l is the density H_A.

The Gibbs measure of the cylinder $[i_0 \ldots i_{n-1}]$ is $\mu_A = ([i_0 \ldots i_{n-1}]) = l_{i_0} e^{S_n(A)(x) - n \log \lambda_A r_{i_{n-1}}}$.
(freezing) phase transition?

Definition

We say that there is a transition phase at β_0 if the pressure function $P(\beta)$ is not analytic at β_0. We say that it is a *freezing phase transition* if $P(\beta)$ is affine for every $\beta > \beta_c$.

In case of a freezing phase transition, after transition

$$P(\beta) = h + \beta a,$$

with $a = \max \int A \, d\mu$.

In ergodic theory, a measure satisfying this last property is said to be *A-maximizing*. In Statistical Mechanics it is a *ground state*. h = residual entropy = max of h_μ, μ is A-maximizing.
Definition

We say that there is a transition phase at β_0 if the pressure function $P(\beta)$ is not analytic at β_0. We say that it is a freezing phase transition if $P(\beta)$ is affine for every $\beta > \beta_c$.

In case of a freezing phase transition, after transition

$$P(\beta) = h + \beta a,$$

with $a = \max \int A \, d\mu$.

In ergodic theory, a measure satisfying this last property is said to be A-maximizing. In Statistical Mechanics it is a ground state. $h = \text{residual entropy} = \max \text{ of } h_\mu$, μ is A-maximizing.
(freezing) phase transition?

Definition

We say that there is a transition phase at β_0 if the pressure function $P(\beta)$ is not analytic at β_0. We say that it is a *freezing phase transition* if $P(\beta)$ is affine for every $\beta > \beta_c$.

In case of a freezing phase transition, after transition

$$P(\beta) = h + \beta.a,$$

with $a = \max \int A \, d\mu$.

In ergodic theory, a measure satisfying this last property is said to be *A-maximizing*. In Statistical Mechanics it is a *ground state*. $h = \text{residual entropy}=\max$ of h_μ, μ is A-maximizing.
(freezing) phase transition?

Definition

We say that there is a transition phase at β_0 if the pressure function $P(\beta)$ is not analytic at β_0. We say that it is a *freezing phase transition* if $P(\beta)$ is affine for every $\beta > \beta_c$.

In case of a freezing phase transition, after transition

$$P(\beta) = h + \beta a,$$

with $a = \max \int A d\mu$.

In ergodic theory, a measure satisfying this last property is said to be *A-maximizing*. In Statistical Mechanics it is a *ground state*. $h = \text{residual entropy} = \max$ of h_μ, μ is A-maximizing.
Remarque

For Curie Weiss model phase transition means more than one “ergodic” components for $\lim_{n \to +\infty} \mu_{n,\beta}$. Here, phase transition $\perp \#$ of equilibrium states.

Examples with $\mathcal{P}(\beta)$ analytic but several equilibrium and examples with $\mathcal{P}(\beta)$ non-analytic but a unique equilibrium.

Question

Can get freezing phase transition with support in a quasi-crystal set after the transition?
Remarque

For Curie Weiss model phase transition means more than one “ergodic” components for $\lim_{n \to +\infty} \mu_{n,\beta}$. Here, phase transition $\perp \#$ of equilibrium states.

Examples with $\mathcal{P}(\beta)$ analytic but several equilibirium and examples with $\mathcal{P}(\beta)$ non-analytici but a unique equilbirium.

Question

Can get freezing phase transition with support in a quasi-crystal set after the transition?
Remarque

For Curie Weiss model phase transition means more than one “ergodic” components for $\lim_{n \to +\infty} \mu_{n,\beta}$. Here, phase transition $\perp \# \text{ of equilibrium states.}$

Examples with $\mathcal{P}(\beta)$ analytic but several equilibirium and examples with $\mathcal{P}(\beta)$ non-analytic but a unique equilbirium.

Question

Can get freezing phase transition with support in a quasi-crystal set after the transition?
How to detect/get freezing phase transition?

Via an inducing scheme. We consider a cylinder $J = [w, J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$, then there exists a unique σ-invariant probability $\hat{\mu}$ such that $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?

Via an inducing scheme. We consider a cylinder $J = [w_J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$, then there exists a unique σ-invariant probability $\hat{\mu}$ such that $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?
Via an inducing scheme. We consider a cylinder $J = [w_J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$, then there exists a unique σ-invariant probability $\hat{\mu}$ such that $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?
Via an inducing scheme. We consider a cylinder $J = [w_J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\widehat{\mu}$ is a σ-invariant probability measure with $\widehat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\widehat{\mu}(\cdot \cap J)}{\widehat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$,
then there exists a unique σ-invariant probability $\widehat{\mu}$ such that $\mu := \frac{\widehat{\mu}(\cdot \cap J)}{\widehat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?
Via an inducing scheme. We consider a cylinder $J = [w, J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{ n \geq 1, \sigma^n(x) \in J \} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$, then there exists a unique σ-invariant probability $\hat{\mu}$ such that $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?
Via an inducing scheme. We consider a cylinder $J = [w_J]$ in Σ. For x in J,
- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$,
then there exists a unique σ-invariant probability $\hat{\mu}$ such that
$\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?
Via an inducing scheme. We consider a cylinder $J = [w_J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$,
then there exists a unique σ-invariant probability $\hat{\mu}$ such that $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
How to detect/get freezing phase transition?

Via an inducing scheme. We consider a cylinder $J = [w_J]$ in Σ. For x in J,

- the first return time is $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\} \leq +\infty$.
- First return map $F(x) := \sigma^{\tau(x)}(x)$. This map is well defined if $\tau(x) < +\infty$.
- The main important point is that the inverse branches are well defined everywhere on J.

Theorem (Dowker)

If $\hat{\mu}$ is a σ-invariant probability measure with $\hat{\mu}(J) > 0$, then, the conditional measure $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ is F-invariant.

Conversely, if μ is a F-invariant probability measure and $\int \tau \, d\mu < +\infty$, then there exists a unique σ-invariant probability $\hat{\mu}$ such that $\mu := \frac{\hat{\mu}(\cdot \cap J)}{\hat{\mu}(J)}$ holds.
At that stage we have two different dynamical systems: \((\Sigma, \sigma)\) and \((J, F)\).

By the Abramov formula

\[
\hat{h}_\mu(f) + \int A \, d\hat{\mu} \leq \mathcal{P} \quad \text{with equality iff } \hat{\mu} = \text{equil. state}
\]

\[
\hat{h}_\mu(f) + \int A \, d\hat{\mu} - \mathcal{P} \leq 0 \quad \text{with equality iff } \hat{\mu} = \text{equil. state}
\]

Consequence

The thermodynamic formalism for \((\Sigma, \sigma)\) and potential \(A\) is related to the thermodynamic formalism for \((J, F)\) and \(S_{\tau(.)}(A)(.)\).
At that stage we have two different dynamical systems: \((\Sigma, \sigma)\) and \((J, F)\). By the Abramov formula

\[
\hat{h}\mu(f) + \int A \, d\hat{\mu} \leq \mathcal{P} \text{ with equality iff } \hat{\mu} = \text{equil. state}
\]

\[
\hat{h}\mu(f) + \int A \, d\hat{\mu} - \mathcal{P} \leq 0 \text{ with equality iff } \hat{\mu} = \text{equil. state}
\]

\[
\hat{\mu}(R) \left(h\mu(F) + \int S_{\tau(\cdot)}(A) - \mathcal{P} \cdot \tau(\cdot) \, d\mu \right) \leq 0 \text{ with equality iff } \hat{\mu} = \text{equil. state}
\]

\[
h\mu(F) + \int S_{\tau(\cdot)}(A) - \mathcal{P} \cdot \tau(\cdot) \, d\mu \leq 0 \text{ with equality iff } \hat{\mu} = \text{equil. state}
\]

Consequence

The thermodynamic formalism for \((\Sigma, \sigma)\) and potential \(A\) is related to the thermodynamic formalism for \((J, F)\) and \(S_{\tau(\cdot)}(A)(\cdot)\).
At that stage we have two different dynamical systems: \((\Sigma, \sigma)\) and \((J, F)\). By the Abramov formula

\[
\hat{h}_\mu(f) + \int A \, d\hat{\mu} \leq \mathcal{P} \quad \text{with equality iff } \hat{\mu} = \text{equil. state}
\]

\[
\hat{h}_\mu(f) + \int A \, d\hat{\mu} - \mathcal{P} \leq 0 \quad \text{with equality iff } \hat{\mu} = \text{equil. state}
\]

Consequence

The thermodynamic formalism for \((\Sigma, \sigma)\) and potential \(A\) is related to the thermodynamic formalism for \((J, F)\) and \(S_{\tau(.)}(A)(.)\).
At that stage we have two different dynamical systems: (Σ, σ) and (J, F). By the Abramov formula

$$h_{\hat{\mu}}(f) + \int A \, d\hat{\mu} \leq \mathcal{P} \text{ with equality iff } \hat{\mu} = \text{equil. state}$$

$$h_{\hat{\mu}}(f) + \int A \, d\hat{\mu} - \mathcal{P} \leq 0 \text{ with equality iff } \hat{\mu} = \text{equil. state}$$

$$\hat{\mu}(R) \left(h_{\mu}(F) + \int S_{\tau(.)}(A) - \mathcal{P} \cdot \tau(.) \, d\mu \right) \leq 0 \text{ with equality iff } \hat{\mu} = \text{equil. state}$$

$$h_{\mu}(F) + \int S_{\tau(.)}(A) - \mathcal{P} \cdot \tau(.) \, d\mu \leq 0 \text{ with equality iff } \hat{\mu} = \text{equil. state}$$

Consequence

The thermodynamic formalism for (Σ, σ) and potential A is related to the thermodynamic formalism for (J, F) and $S_{\tau(.)}(A)(.)$.
Let $A : \Sigma \to \mathbb{R}$ be some potential function and $J = [w_J]$ be a cylinder. Consider the first return map to J, with return time
\[\tau(x) = \min \{ n \geq 1, \sigma^n(x) \in J \}. \]
Then we define, for each $\beta > 0$ and $Z \in \mathbb{R}$, an induced transfer operator by:
\[
\mathcal{L}_{Z, \beta}(g)(x) = \sum_{n \in \mathbb{N}} \sum_{\substack{\tau(y) = n \\ \sigma^n(y) = x}} e^{\beta \cdot S_n(A)(y) - nZ} g(y)
\]
where $S_N(A)(y) = \sum_{k=0}^{N-1} A \circ \sigma^k(y)$ and g is a continuous function from J to \mathbb{R}.
Let $A : \Sigma \to \mathbb{R}$ be some potential function and $J = [w_J]$ be a cylinder. Consider the first return map to J, with return time $\tau(x) = \min\{n \geq 1, \sigma^n(x) \in J\}$. Then we define, for each $\beta > 0$ and $Z \in \mathbb{R}$, an induced transfer operator by:

$$L_{Z, \beta}(g)(x) = \sum_{n \in \mathbb{N}} \sum_{\substack{\tau(y) = n \\sigma^n(y) = x}} e^{\beta \cdot S_n(A)(y) - nZ} g(y)$$

where $S_N(A)(y) = \sum_{k=0}^{N-1} A \circ \sigma^k(y)$ and g is a continuous function from J to \mathbb{R}.
Theorem

We have with the previous notations:

- For every $\beta \geq 0$, there exists a minimal $Z_c(\beta) \in \mathbb{R} \cup \{-\infty\}$ such that for every $Z > Z_c(\beta)$, $L_{Z,\beta}$ acts on $C^0(J)$. In particular, for every $Z > Z_c(\beta)$, for every $x \in J$ and for every $g \in C^0(J)$, $L_{Z,\beta}(g)(x)$ converges.
- $P(\beta) \geq Z_c(\beta)$.
- Let $\lambda_{Z,\beta}$ be the spectral radius for $L_{Z,\beta}$ and for $Z > Z_c(\beta)$. Then $Z \mapsto \log \lambda_{Z,\beta}$ is a decreasing function and we have three possible cases given by

\[
\begin{align*}
Z_c(\beta) & \quad \log \lambda_{Z,\beta} \\
Z & \quad \log \lambda_{Z,\beta} \\
Z_c(\beta) & \quad \log \lambda_{Z,\beta}
\end{align*}
\]
Theorem (suite)

- If case 1 holds, then $\log \lambda_{Z,\beta} = 0$ if and only if $Z = \mathcal{P}(\beta)$ and there is a unique equilibrium state for β. It is a fully supported measure in Σ. Moreover, $Z_c(\beta) < \mathcal{P}(\beta)$ and $\beta \to \mathcal{P}(\beta)$ is analytic on the largest open interval where case 1 holds.

- If case 3 holds, then no equilibrium state gives positive weight to J.

- Case 2 is the critical case.

Example: Hofbauer.
Theorem (suite)

- If case 1 holds, then \(\log \lambda_{Z,\beta} = 0 \) if and only if \(Z = \mathcal{P}(\beta) \) and there is a unique equilibrium state for \(\beta \). A; it is a fully supported measure in \(\Sigma \). Moreover, \(Z_c(\beta) < \mathcal{P}(\beta) \) and \(\beta \to \mathcal{P}(\beta) \) is analytic on the largest open interval where case 1 holds.

- If case 3 holds, then no equilibrium state gives positive weight to \(J \).

- Case 2 is the critical case.

Example: Hofbauer.
My lectures in cartoons
Ergodic Gibbs Measure \approx Limit of Gibbs measures for Curie-Weiss Model
Ergodic Gibbs Measure \approx Limit of Gibbs measures for Curie-Weiss Model
Ergodic Gibbs Measure \approx \text{Limit of Gibbs measures for Curie-Weiss Model}
Critical level
Critical level
Critical level
Critical level
measure contribution

Measure contribution

Measure contribution

Measure sum of contributions

Measure contribution
Theorem

We have with the previous notations:

- For every $\beta \geq 0$, there exists a minimal $Z_c(\beta) \in \mathbb{R} \cup \{-\infty\}$ such that for every $Z > Z_c(\beta)$, L_Z,β acts on $C^0(J)$. In particular, for every $Z > Z_c(\beta)$, for every $x \in J$ and for every $g \in C^0(J)$, $L_Z,\beta(g)(x)$ converges.

- $P(\beta) \geq Z_c(\beta)$.

- Let $\lambda_{Z,\beta}$ be the spectral radius for L_Z,β and for $Z > Z_c(\beta)$. Then $Z \mapsto \log \lambda_{Z,\beta}$ is a decreasing function and we have three possible cases given by

\[
\begin{align*}
\log \lambda_{Z,\beta} & \leq \log \lambda_{Z_c(\beta),\beta} \\
Z & \geq Z_c(\beta) \\
\log \lambda_{Z,\beta} & \geq \log \lambda_{Z_c(\beta),\beta} \\
Z & < Z_c(\beta)
\end{align*}
\]
\[\lambda_{Z,\beta} \approx \mathcal{L}_{Z,\beta}(1)(x) = \sum_{n \in \mathbb{N}} \sum_{\tau(y) = n} e^{\beta \cdot S_n(A)(y) - nZ} \]
Play on the temperature β

$\approx \Phi$ (potential)

Theorem

There exist sophisticated baskets such that if β is sufficiently big (temperature sufficiently small) the bees do no collect too much contaminated pollen.
Play on the temperature β

$\beta \approx \Phi$ (potential)

Theorem

There exist sophisticated baskets such that if β is sufficiently big (temperature sufficiently small) the bees do no collect too much contaminated pollen.
There exist sophisticated baskets such that if β is sufficiently big (temperature sufficiently small) the bees do no collect to much contaminated pollen.
Theorem

Consider a primitive, aperiodic and marked substitution, \mathbb{K} the attractor associated to H and consider the potential defined by

$$V(x) := -\log \left(\frac{n + 1}{n} \right) \text{ if } d(x, \mathbb{K}) = 2^{-n}.$$ Then there exists a positive number β_c such that the pressure function has a freezing phase transition at β_c. More precisely:

- For $\beta < \beta_c$ the pressure function is analytic, there is a unique equilibrium state for $\beta.V$ and it has full support.
- For $\beta > \beta_c$ the pressure is equal to zero and $\mu_{\mathbb{K}}$ is the unique equilibrium state for $\beta.V$.