HIGHER DIMENSIONS

# Symmetries of monocoronal tilings based on a joint work with Dirk Frettlöh

Alexey Garber

The University of Texas Rio Grande Valley

June 7, 2016 Oléron

#### TILINGS

#### Definition

A collection  $\mathcal{T}$  of (convex) polytopes in  $\mathbb{R}^d$  is called (*locally finite*) tiling if

- union of all polytopes from  $\mathcal{T}$  is  $\mathbb{R}^d$ ;
- they do not intersect in internal points;
- every ball intersects only finite number of polytopes from  $\mathcal{T}$ .

#### Tilings

#### Definition

A collection  $\mathcal{T}$  of (convex) polytopes in  $\mathbb{R}^d$  is called (*locally finite*) *tiling* if

- union of all polytopes from  $\mathcal{T}$  is  $\mathbb{R}^d$ ;
- they do not intersect in internal points;
- every ball intersects only finite number of polytopes from T.

#### Definition

A tiling is called *face-to-face* or *normal* if intersection of any two tiles is a face of both.

PERIODIC AND APERIODIC TILINGS

Is it true that unique local structure of a tiling  $\mathcal T$  implies that  $\mathcal T$ posesses a "rich" symmetry group?

Planar case

# Periodic, k-periodic, and non-periodic tilings

# Definition

A tiling of  $\mathbb{R}^d$  is called *periodic* if it has *d*-dimensional translation group.

#### Definition

A tiling of  $\mathbb{R}^d$  is called *k-periodic* (with k < d) if it has k-dimensional translation group. If a tiling is 0-periodic then it is also called a *non-periodic* tiling.

# Definition

A tiling  $\mathcal{T}$  is called *crystallographic* if its symmetry group has a compact fundamental domain.

In Euclidean space crystallographic tiling is the same as periodic tiling, but this definition can be used in the hyperbolic space  $\mathbb{H}^d$  too.

#### CORONAE OF A TILE

#### Definition

The *k*-th facet corona of an arbitrary tile P is the collection of all tiles of  $\mathcal{T}$  that can be reached from P by at most k steps across facets of  $\mathcal{T}$ .

# Theorem (Generalized Local Theorem by N. Dolbilin and M. Shtogrin)

A tiling of  $\mathbb{R}^d$  (or  $\mathbb{H}^d$ ) is crystallographic iff for some k the following conditions hold.

- ► For the number N(k) of k-th facet coronae we have: N(k) = N(k+1) and this number is finite.
- ► For every i the symmetry groups  $S_i(k)$  and  $S_i(k+1)$  of k-corona and (k+1)-corona of the i-th type coincide.

#### VERTEX CORONA

Consider an arbitrary vertex A of the tiling  $\mathcal{T}$ .

#### Definition

The set of all polytopes contains *A* is called *the vertex corona* of *A* 

#### Definition

A tiling  $\mathcal{T}$  is said to be a *monocoronal* if all its vertex coronae are congruent. This means not only collections of polytopes are the same but also that they arranged at corresponding vertices in the same way.

# Question

Periodic and Aperiodic Tilings

Is it true that every monocoronal tiling  $\mathcal T$  is periodic (or crystallographic)?

Why do we need to use only one corona?



### IDEA OF FACE-TO-FACE CLASSIFICATION: COMBINATORICS

#### Lemma

Periodic and Aperiodic Tilings

If every vertex corona contains n polygons with sides  $a_1, a_2, \ldots, a_n$ then

$$\sum \frac{1}{a_i} = \frac{n-2}{2}.$$

**Idea:** count the average angle that a polygon brings to a neighborhood of a vertex.

There are finitely many integer solutions of this equation (however not every solution can be realized as a monocoronal tiling).

PERIODIC AND APERIODIC TILINGS

HYPERBOLIC SPACE

# IDEA OF FACE-TO-FACE CLASSIFICATION: COMBINATORICS

For example, there is a solution  $a_1 = 1$ ,  $a_2 = a_3 = 4$ ,  $a_4 = 6$ .

# IDEA OF FACE-TO-FACE CLASSIFICATION: COMBINATORICS

For example, there is a solution  $a_1 = 1$ ,  $a_2 = a_3 = 4$ ,  $a_4 = 6$ .

Two theoretical local structures are



PERIODIC AND APERIODIC TILINGS



PERIODIC AND APERIODIC TILINGS

For example, there is a solution  $a_1 = 1$ ,  $a_2 = a_3 = 4$ ,  $a_4 = 6$ .

The only possible combinatorial structure is the following:



HIGHER DIMENSIONS

# IDEA OF FACE-TO-FACE CLASSIFICATION: METRIC PROPERTIES

► We mark segments that are equal with the same color.



► We mark segments that are equal with the same color.



PERIODIC AND APERIODIC TILINGS

## IDEA OF FACE-TO-FACE CLASSIFICATION: METRIC PROPERTIES

► We mark segments that are equal with the same color.



In this particular case there are two possibilities.

# Some examples of monocoronal tilings



HIGHER DIMENSIONS

#### Some examples of monocoronal tilings





#### Example of a 1-periodic tiling



#### IDEA OF NON FACE-TO-FACE CLASSIFICATION

#### Lemma

Assume every vertex corona of A contains n + 1 polygons one of which contains vertex on its side. Let other polygons have  $a_1, a_2, \ldots, a_n$  sides. Then

$$\sum \frac{1}{a_i} = \frac{n-1}{2}.$$



## Claim

Periodic and Aperiodic Tilings

A two-dimensional monocoronal tiling  $\mathcal{T}$  is not necessary periodic.

#### Claim

 $\mathcal{T}$  has at least one-dimensional translation group  $G_{\mathcal{T}}$ .

#### Claim

If  $G_T$  is one-dimensional then we must use corona  $C_T$  and its reflected image (rotations are not enough).

## Theorem (D. Frettlöh, A.G.)

16 of 17 crystallographic groups and 4 of 7 frieze groups can appear as a symmetry group of a monocoronal tiling.

### Question

What is the minimal dimension of the translation group  $G_T$  a monocoronal can have?

#### Question

Can a monocoronal tiling with unique "non-reflected" vertex corona be non-periodic?

#### FACE-TO-FACE TILINGS

# Theorem (D. Frettlöh, A.G.)

There are d-dimensional face-to-face monocoronal tilings with translation group of dimension  $\lceil \frac{d}{2} \rceil$ .

#### Theorem (D. Frettlöh, A.G.)

There are d-dimensional face-to-face monocoronal tilings with directly congruent coronae (rigid motions only!) with translation group of dimension  $\lceil \frac{d+1}{2} \rceil$ .

# Non-face-to-face tilings



# Non-face-to-face tilings



# Non-face-to-face tilings



# Böröczky tiling

PERIODIC AND APERIODIC TILINGS

| Ī |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---|--|--|--|--|--|--|--|--|--|--|--|--|--|
|   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| İ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ١ |  |  |  |  |  |  |  |  |  |  |  |  |  |

HYPERBOLIC SPACE

# Dual tiling



HYPERBOLIC SPACE

# Question

What is the minimal dimension the translation group of a d-dimensional monocoronal face-to-face tiling?

In particular, can a three-dimensional monocoronal face-to-face tiling be non-periodic?

PERIODIC AND APERIODIC TILINGS

# THANK YOU!