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Tilings

Definition
A collection T of (convex) polytopes in Rd is called (locally finite)
tiling if

I union of all polytopes from T is Rd;
I they do not intersect in internal points;
I every ball intersects only finite number of polytopes from
T .

Definition
A tiling is called face-to-face or normal if intersection of any two
tiles is a face of both.
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The question

Is it true that unique local structure of a tiling T implies that T
posesses a “rich” symmetry group?
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Periodic, k-periodic, and non-periodic tilings

Definition
A tiling of Rd is called periodic if it has d-dimensional
translation group.

Definition
A tiling of Rd is called k-periodic (with k < d) if it has
k-dimensional translation group. If a tiling is 0-periodic then it
is also called a non-periodic tiling.
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Crystallographic tilings

Definition
A tiling T is called crystallographic if its symmetry group has a
compact fundamental domain.

In Euclidean space crystallographic tiling is the same as
periodic tiling, but this definition can be used in the hyperbolic
space Hd too.
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Coronae of a tile
Definition
The k-th facet corona of an arbitrary tile P is the collection of all
tiles of T that can be reached from P by at most k steps across
facets of T .

Theorem (Generalized Local Theorem by N. Dolbilin and
M. Shtogrin)
A tiling of Rd (or Hd) is crystallographic iff for some k the following
conditions hold.

I For the number N(k) of k-th facet coronae we have:
N(k) = N(k + 1) and this number is finite.

I For every i the symmetry groups Si(k) and Si(k + 1) of k-corona
and (k + 1)-corona of the i-th type coincide.
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Vertex corona

Consider an arbitrary vertex A of the tiling T .

Definition
The set of all polytopes contains A is called the vertex corona of A

Definition
A tiling T is said to be a monocoronal if all its vertex coronae are
congruent. This means not only collections of polytopes are the
same but also that they arranged at corresponding vertices in
the same way.
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Unique vertex corona and periodicity
Question
Is it true that every monocoronal tiling T is periodic (or
crystallographic)?

Why do we need to use only one corona?
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Idea of face-to-face classification: combinatorics

Lemma
If every vertex corona contains n polygons with sides a1, a2, . . . , an
then ∑ 1

ai
=

n− 2
2 .

Idea: count the average angle that a polygon brings to a
neighborhood of a vertex.

There are finitely many integer solutions of this equation
(however not every solution can be realized as a monocoronal
tiling).
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Idea of face-to-face classification: combinatorics

For example, there is a solution a1 = 1, a2 = a3 = 4, a4 = 6.
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Idea of face-to-face classification: combinatorics

For example, there is a solution a1 = 1, a2 = a3 = 4, a4 = 6.

The only possible combinatorial structure is the following:
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Idea of face-to-face classification: metric properties

I We mark segments that are equal with the same color.
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Idea of face-to-face classification: metric properties

I We mark segments that are equal with the same color.

In this particular case there are two possibilities.
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Some examples of monocoronal tilings
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Example of a 1-periodic tiling
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Idea of non face-to-face classification
Lemma
Assume every vertex corona of A contains n + 1 polygons one of
which contains vertex on its side. Let other polygons have
a1, a2, . . . , an sides. Then ∑ 1

ai
=

n− 1
2 .
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Properties of two-dimensional monocoronal tilings
Claim
A two-dimensional monocoronal tiling T is not necessary periodic.

Claim
T has at least one-dimensional translation group GT .

Claim
If GT is one-dimensional then we must use corona CT and its
reflected image (rotations are not enough).

Theorem (D. Frettlöh, A.G.)
16 of 17 crystallographic groups and 4 of 7 frieze groups can appear as
a symmetry group of a monocoronal tiling.
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Further questions about monocoronal tilings in
arbitrary dimensions

Question
What is the minimal dimension of the translation group GT a
monocoronal can have?

Question
Can a monocoronal tiling with unique “non-reflected” vertex corona
be non-periodic?
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Face-to-face tilings

Theorem (D. Frettlöh, A.G.)
There are d-dimensional face-to-face monocoronal tilings with

translation group of dimension dd2e.

Theorem (D. Frettlöh, A.G.)
There are d-dimensional face-to-face monocoronal tilings with directly
congruent coronae (rigid motions only!) with translation group of

dimension dd + 1
2 e.
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Non-face-to-face tilings
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Böröczky tiling
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Dual tiling
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Open question

Question
What is the minimal dimension the translation group of a
d-dimensional monocoronal face-to-face tiling?

In particular, can a three-dimensional monocoronal face-to-face
tiling be non-periodic?
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THANK YOU!
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