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We give strongly aperiodic subshifts of finite type on every hyperbolic
surface group; more generally, for each pair of expansive primitive

symbolic substitution systems with incommensurate growth rates, we
construct strongly aperiodic subshifts of finite type on their orbit

graphs.
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◮ Z× G for a general class of group G (Jeandel, 2015b)

◮ Z
2
⋊ G for any group with decidable word problem (Barbieri and

Sablik, 2016)
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Whether or not a group admits a SASFT is a quasi-isometry invariant
under mild conditions (Cohen 2015),

a commensurability invariant (Carroll, Penland 2015).

No free group admits a SASFT(Piantadosi), nor moreover does any
group with more than one end (Cohen),

nor, remarkably, does any group with undecidable word problem
(Jeandel, 2015).



(It is not too hard, typically, to construct “weakly aperiodic" subshifts

of finite type, in which there exist elements stabilized by Z, but none

with co-finite stabilizer.)



Though strongly aperiodic tilings have been constructed in H
2, the

underlying tiles do not admit a tiling of any compact fundamental
domain, and do not directly shed light on SASFT’s for hyperbolic

surface groups.

To produce such an SASFT, we give three tricks here, that are of

general utility (really, at least one of these is probably better than the

result given here.)



Though strongly aperiodic tilings have been constructed in H
2, the

underlying tiles do not admit a tiling of any compact fundamental
domain, and do not directly shed light on SASFT’s for hyperbolic

surface groups.

To produce such an SASFT, we give three tricks here, that are of

general utility (really, at least one of these is probably better than the

result given here.)

◮ (Sadun ∼ 2000) Every primitive symbolic substitution system can
be encoded as a decorated “orbit tiling", or dually, an “orbit

graph".



Though strongly aperiodic tilings have been constructed in H
2, the

underlying tiles do not admit a tiling of any compact fundamental
domain, and do not directly shed light on SASFT’s for hyperbolic

surface groups.

To produce such an SASFT, we give three tricks here, that are of

general utility (really, at least one of these is probably better than the

result given here.)

◮ (Sadun ∼ 2000) Every primitive symbolic substitution system can
be encoded as a decorated “orbit tiling", or dually, an “orbit

graph".

◮ Every incommensurate pair of primitive symbolic substitution
systems can be encoded as a SASFT on such an orbit tiling or

orbit graph.



Though strongly aperiodic tilings have been constructed in H
2, the

underlying tiles do not admit a tiling of any compact fundamental
domain, and do not directly shed light on SASFT’s for hyperbolic

surface groups.

To produce such an SASFT, we give three tricks here, that are of

general utility (really, at least one of these is probably better than the

result given here.)

◮ (Sadun ∼ 2000) Every primitive symbolic substitution system can
be encoded as a decorated “orbit tiling", or dually, an “orbit

graph".
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◮ Surface groups can be realized in primitive symbolic substitution

systems.
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The key observation is that every pair of primitive symbolic
substitution systems can be encoded as a SASFT on such an orbit

tiling or orbit graph.

Here we show 0 7→ 0
2 versus a 7→ ab,b 7→ aab The critical

observation is that these relative growth rates are highly constrained.
In effect, we create a set of tiles encoding the local combinatorics of

how these tilings may meet; any tiling by these tiles must enforce the

growth rates of the underlying substitution systems. In turn, as these
growth rates are incommensurate, there can be no vertical period.

(This essentially a generalization of the construction in (GS 2005), in
turn derived from ( Kari 1996)— in our terms here, the underlying

substitution systems there are simply 0 7→ 0
2 and 0 7→ 0

3.)
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◮ (Sadun ∼ 2000) Every primitive symbolic substitution system can
be encoded as a decorated “orbit tiling", or dually, an “orbit

graph".

◮ Every incommensurate pair of primitive symbolic substitution
systems can be encoded as a SASFT on such an orbit tiling or

orbit graph.

◮ Cayley graphs of surface groups can be embedded in orbit

graphs of primitive symbolic substitution systems.

◮ Finally, we pull back a SASFT on such an orbit graph to the

surface group.


