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Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ(1) = 12

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.



Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ2(1) = 1213

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.



Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ3(1) = 1213121

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.



Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ4(1) = 1213121121312

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.



Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ5(1) = 121312112131212131211213

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.



Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 121312112131212131211213 · · · ∈ {1, 2, 3}N

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.
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1 1 1
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, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β
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Pisot substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 121312112131212131211213 · · · ∈ {1, 2, 3}N

Mσ =
(

1 1 1
1 0 0
0 1 0

)
, f (x) = x3 − x2 − x − 1

β > 1 Pisot root of f (x) : |β′| < 1, ∀β′ Galois conjugate of β

σ is an irreducible unimodular Pisot substitution.



The Rauzy fractal

Mσ-invariant decomposition: R3 = E u ⊕ E s ∼= R⊕ C.

Broken line (balanced): σ∞(1) = ε121312112131212131211213 · · · .

Rauzy fractal

R =
⋃

i∈AR(i) where R(i) = {πs(l(p)) : pi prefix of σ∞(1)} ⊂ E s .

Domain exchange E : R(i) 7→ R(i) + πc(ei ).

Strong coincidence condition: ∀ (i , j) ∈ A2, ∃ n, ∃a ∈ A such that
σn(i) = p1as1, σn(j) = p2as2 with |p1| = |p2|.
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The Rauzy fractal

Mσ-invariant decomposition: R3 = E u ⊕ E s ∼= R⊕ C.

Broken line (balanced): σ∞(1) = 121312112131212131211213 · · · .

Rauzy fractal
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GIFS and dual substitution

Rauzy fractals

• are compact with non-zero measure.

• are the closure of their interior.

• have fractal boundary with zero measure.

• are self-similar, they obey to certain set equations.

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Prefix graph:

1

2

3

1

ε

ε

1

ε

Graph-directed iterated function
system (GIFS):

R(a) =
⋃

b
p−→a

MσR(b) + πs(l(p))



GIFS and dual substitution

Rauzy fractals

• are compact with non-zero measure.

• are the closure of their interior.

• have fractal boundary with zero measure.

• are self-similar, they obey to certain set equations.

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Prefix graph:

1

2

3

1

ε

ε

1

ε

Graph-directed iterated function
system (GIFS):

R(1) = MσR(1) ∪MσR(2) ∪MσR(3)

R(2) = MσR(1) + πs(e1)

R(3) = MσR(2) + πs(e1)



Dual substitution

Dual action on (d − 1)-dimensional faces:

E∗1(σ) : [x, 1] 7→ [M−1
σ x, 1] ∪ [M−1

σ x, 2] ∪ [M−1
σ x, 3]

[x, 2] 7→ [M−1
σ (x + πs(e1)), 1]

[x, 3] 7→ [M−1
σ (x + πs(e1)), 2]
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Dual substitution

E∗1(σ) : [x, 1] 7→ [M−1
σ x, 1] ∪ [M−1

σ x, 2] ∪ [M−1
σ x, 3]

[x, 2] 7→ [M−1
σ (x + πs(e1)), 1]

[x, 3] 7→ [M−1
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Dual substitution

E∗1(σ) : [x, 1] 7→ [M−1
σ x, 1] ∪ [M−1

σ x, 2] ∪ [M−1
σ x, 3]

[x, 2] 7→ [M−1
σ (x + πs(e1)), 1]

[x, 3] 7→ [M−1
σ (x + πs(e1)), 2]



Dual substitution

E∗1(σ) : [x, 1] 7→ [M−1
σ x, 1] ∪ [M−1

σ x, 2] ∪ [M−1
σ x, 3]

[x, 2] 7→ [M−1
σ (x + πs(e1)), 1]

[x, 3] 7→ [M−1
σ (x + πs(e1)), 2]

R(i) = lim
n→∞

πs(Mn
σ E
∗
1(σ)n([0, i ]))



Stepped surfaces

Set of coloured points “near” to E s :

Γ = {(x, a) ∈ Zd ×A : x ∈ (E s)≥, x− ea ∈ (E s)<}

• E∗1(σ)(Γ) = Γ → self-replicating property.

• Aperiodic translation set (Delone set) for a self-replicating multiple
tiling made of Rauzy fractals.

• Geometric representation as an arithmetic discrete model of the
hyperplane E s , whose projection is a polygonal tiling.
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Γ = {(x, a) ∈ Zd ×A : x ∈ (E s)≥, x− ea ∈ (E s)<}

• E∗1(σ)(Γ) = Γ → self-replicating property.

• Aperiodic translation set (Delone set) for a self-replicating multiple
tiling made of Rauzy fractals.

• Geometric representation as an arithmetic discrete model of the
hyperplane E s , whose projection is a polygonal tiling.



Pisot conjecture

Substitutive system

(Xσ,S), where Xσ = {Sku : k ∈ Z}

• For a primitive σ, (Xσ,S) is a minimal, uniquely ergodic, zero
entropy subshift.

• Representation map ϕ : Xσ → R, w0w1 · · · 7→
⋂

n≥0R(w0 · · ·wn).

• Action of S is conjugate to the domain exchange E .

• R induces a periodic tiling of E s ?
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Pisot conjecture

Substitutive system

(Xσ,S), where Xσ = {Sku : k ∈ Z}

• For a primitive σ, (Xσ,S) is a minimal, uniquely ergodic, zero
entropy subshift.

• Representation map ϕ : Xσ → R, w0w1 · · · 7→
⋂

n≥0R(w0 · · ·wn).

• Action of S is conjugate to the domain exchange E .

• R induces a periodic tiling of E s ?

Xσ //

S

��

R
∼=? //

E
��

E s/Λ

τ

��
Xσ // R

∼=? // E s/Λ

The conjugation (Xσ,S) ∼= (R, E) can be extended to any irreducible
unit Pisot substitution satisfying the strong coincidence condition
(Arnoux, Ito 2001).



Pisot conjecture

Substitutive system

(Xσ,S), where Xσ = {Sku : k ∈ Z}

• For a primitive σ, (Xσ,S) is a minimal, uniquely ergodic, zero
entropy subshift.

• Representation map ϕ : Xσ → R, w0w1 · · · 7→
⋂

n≥0R(w0 · · ·wn).

• Action of S is conjugate to the domain exchange E .

• R induces a periodic tiling of E s ?

Pisot conjecture

Let σ be an irreducible unit Pisot substitution. Then (Xσ,S) has pure
discrete spectrum, or equivalently it is metrically isomorphic to a
translation on a torus Td−1.



Beyond irreducibility

Reducible

#A > deg β, char(Mσ) splits over Q in a Pisot polynomial and in a
neutral one.

Rd = E u ⊕ E s ⊕ E n

[joint works with B. Loridant, and with X. Bressaud, T. Jolivet]

Hyperbolic

We have a stable-unstable splitting and dim(E u) > 1.

Tool: higher dimensional duals.



Beyond irreducibility

Reducible

#A > deg β, char(Mσ) splits over Q in a Pisot polynomial and in a
neutral one.

Rd = E u ⊕ E s ⊕ E n

[joint works with B. Loridant, and with X. Bressaud, T. Jolivet]

Hyperbolic

We have a stable-unstable splitting and dim(E u) > 1.

Tool: higher dimensional duals.



Reducibility

σ : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1

char(Mσ) = (x3 − x − 1)(x2 − x + 1), R5 = E u ⊕ E s ⊕ E n

Projecting the vertices of the broken line
1 23 4 5 1 1 2 1 23 · · ·



Problems

Framework: reducible Pisot substitutions.

Some problems:

• Pisot conjecture? False: e.g. Thue-Morse.

• No definition as Hausdorff limit of renormalized patches of polygons.

• No geometric representation for stepped surfaces.

• No periodic (multiple) tiling.

We show some solutions to the last three issues.



Higher dimensional dual maps

Recall: n = #A > d = deg(β).

We want to work with (d − 1)-dimensional faces!
The dual map E∗n−d+1(σ) will suit:

E∗n−d+1(σ)(x, a)∗ =
∑
b

p
−→a

(
M−1
σ (x− l(p)), b

)∗

Remarks:

• E∗n−d+1(σ) acts on
(

n
n−d+1

)
oriented faces.

• If σ is irreducible n = d and E∗n−d+1(σ) = E∗1(σ).

• Ek(σ) and E∗k(σ) commute in general with boundary and
coboundary operators (Sano, Arnoux, Ito 2001).

• Similar approach for the study of a free group automorphism
associated with a complex Pisot root
(Arnoux, Furukado, Harriss, Ito 2011).
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Stepped surfaces

Let U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4)}. We have U ⊂ E∗3(σ)5(U).
Consider

ΓU =
⋃
k≥0

E∗3(σ)5k(U)
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Stepped surfaces

Let U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4)}. We have U ⊂ E∗3(σ)5(U).
Consider

ΓU =
⋃
k≥0

E∗3(σ)5k(U)

• Projects well: E∗3(σ)(0, a)∗

does not overlap, ∀a.

• Geometric finiteness property:
πs(ΓU ) covers E s ∼= C.

• πs(ΓU ) is a polygonal tiling.



Rauzy fractals and tilings

Rauzy fractals: R(a) + πs(x) = limk→∞ πs(Mk
σ E
∗
n−d+1(σ)k(x, a)∗).

Properties:

• if neutral polynomial has only roots of modulus one

R(a) + πs(x) =
⋃

(y,b)∈E∗
n−d+1(σ)(x,a)

Mσ

(
R(b) + πs(y)

)
,

where the union is measure disjoint.

• compact with nonzero measure.

• closure of the interior.

• boundary has zero measure.



Rauzy fractals and tilings

Rauzy fractals: R(a) + πs(x) = limk→∞ πs(Mk
σ E
∗
n−d+1(σ)k(x, a)∗).

The collection {R(a) + πs(x) : (x, a)∗ ∈ ΓU} is a self-replicating tiling.
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Periodic tilings

Recall: the original Hokkaido tile can not tile periodically (Ei, Ito 2005)

U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4)}.

• The patch πc(U) tiles periodically by
the lattice
ΛU = πc((e4 − e3)Z + (e4 − e2)Z).

• RU + ΛU is a periodic tiling.

• Do you see the original Hokkaido tile?
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Broken lines and morphisms

Being reducible means that some linear dependencies arise when we
project the basis vectors {ea}a∈A from R5 to R3 along E n:

π(e1) = π(e3) + π(e4), π(e5) = π(e2) + π(e3)

Combinatorially this is equivalent to applying the morphism

χ : 1 7→ 34, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 32.

1 23 4 5 1 1 2 1 2 3

3 4 23 4 3 2 3 34 4 3 42 2 3

Project now the vertices of the new broken line. . .
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Domain exchange

• (T , ET ) is a domain exchange on the
original Hokkaido tile.

ET : T (a) 7→ T (a) + πs(ea), a ∈ A

• (R, E) is a toral translation, since it
induces a periodic tiling of C.

E : R(a) 7→ R(a)+πs(ea), a ∈ {2, 3, 4}

• ET is the first return of E on T .



Codings of the domain exchange

Let Ω = {Skw : k ∈ N}, where w = χ(u) is the coded fixed point of σ.

We have the following commutative diagram:

Xσ
χ //

S

��

Ω
φ //

S

��

R //

E

��

C/Λ

E

��
Xσ

χ // Ω
φ // R // C/Λ

φ measure conjugation.

We can generalize what shown for the family of substitutions

σt : 1 7→ 1t+12, 2 7→ 3, 3 7→ 4, 4 7→ 1t5, 5 7→ 1

→ (Xσ,S , µ) is the first return of a toral translation.



Remarks

Important hypotheses:

• Projecting well → projection of patches onto E s behaves well.

• Geometric finiteness property → covering property for the stepped
surface.

• Roots of the neutral polynomial of modulus one → measure
disjointness in the set equation.

• Positivity:
∧k

i=1 Mσ can have negative entries.
Can we control cancellation? Can we control it using orientation of
faces? For Tribo:

M1 =
(

1 1 0
1 0 1
1 0 0

)
, M2 =

(−1 1 1
−1 0 0
0 −1 0

)
.

Possible definition of positivity: |Mk |j = |M j
k |, for all j ∈ N.
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Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!



Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!

Figure: Changing suitably the projection we get different polygonal tilings by
some faces of three different types.



Perspectives

• Can we generalize these constructions to every reducible Pisot
substitution?

• Characterize the points of the stepped surfaces as in the irreducible
case.

• Is χ ◦ σ a new (irreducible) substitution?

• Influence of the neutral space in the dynamics.

• When is a first return of a rotation on a torus again a rotation?

• Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)

• Height group.

• Pisot conjecture for reducible substitutions?
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Strange examples

(Joint with X. Bressaud, T. Jolivet)

The geometric interpretation seems to get harder for other substitutions,
not satisfying the strong coincidence condition:

σ : 1 7→ 213, 2 7→ 4, 3 7→ 5, 4 7→ 21

char(Mσ) = (x2 + x + 1)(x3 − 2x2 + x − 1)



Lifting in the neutral space

Projection πs,n : Rd → E s ⊕ E n.



Lifting in the neutral space

Projection πs,n : Rd → E s ⊕ E n.

Criterion to know whether we get finitely many layers and NEW strong
coincidence condition.



Gluing together

Projecting down suitably we can glue the subtiles together. . .

Figure: Symbolic splitting associated with the irreducible substitution
τ : 1 7→ 12, 2 7→ 32, 3 7→ 1.

. . . and obtain the connection with an irreducible substitution.

Philosophy: dynamically the reducible substitutive system behaves
exactly as the irreducible one, after identifying some letters / changing
projection. Technique: symbolic splitting.



Hokkaido again

Figure: Rauzy fractal of the Hokkaido substitution in E s ⊕ E n. The points
distribute with logarithmic growth on a two-dimensional lattice.



Hyperbolic case

A self-induced IET substitution

σ : 1 7→ 124, 2 7→ 1224, 3 7→ 124334, 4 7→ 12434

char(Mσ) = x4 − 7x3 + 13x2 − 7x + 1, β1, β2 > 1, β3, β4 < 1

Geometric representation → two fractal windows generated by

E2(σ)(x, a) =
∑
a

p
−→b

(
Mσx + l(p)), b

)
E∗2(σ)(x, a)∗ =

∑
b

p
−→a

(
M−1
σ (x− l(p)), b

)∗
Argue with similar hypotheses as for the reducible case: positivity,
projecting-well, geometric finiteness property, etc.

Very complicated to state results in full generality! See Sage. . .


