Geometric models for reducible or hyperbolic substitutions

Milton Minervino

I2M, Aix-Marseille Université

June 7, 2016

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

$$\sigma(1) = 12$$

$$\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$$

$$\sigma^2(1) = 1213$$

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

 $\sigma^{3}(1) = 1213121$

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

 $\sigma^4(1) = 1213121121312$

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

$$\sigma^5(1) = 121312112131212131211213$$

$$\sigma: 1 \mapsto 12, \, 2 \mapsto 13, \, 3 \mapsto 1$$

$$\sigma^{\infty}(1) = 121312112131212131211213 \dots \in \{1, 2, 3\}^{\mathbb{N}}$$

$$\sigma: 1 \mapsto 12, \, 2 \mapsto 13, \, 3 \mapsto 1$$

$$\sigma^{\infty}(1) = 121312112131212131211213 \dots \in \{1, 2, 3\}^{\mathbb{N}}$$

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$
$$\sigma^{\infty}(1) = 121312112131212131211213 \dots \in \{1, 2, 3\}^{\mathbb{N}}$$

$$M_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad f(x) = x^3 - x^2 - x - 1$$

 $\beta>1$ Pisot root of $f(x):|\beta'|<1,\,\forall\,\beta'$ Galois conjugate of β

 σ is an irreducible unimodular **Pisot** substitution.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = \epsilon 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = \frac{12}{1312112131212131211213} \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

Rauzy fractal

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

Domain exchange $\mathcal{E}: \mathcal{R}(i) \mapsto \mathcal{R}(i) + \pi_c(\mathbf{e}_i)$.

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$.

Rauzy fractal

$$\mathcal{R} = \bigcup_{i \in \mathcal{A}} \mathcal{R}(i)$$
 where $\mathcal{R}(i) = \overline{\{\pi_s(\mathbf{I}(p)) : pi \text{ prefix of } \sigma^{\infty}(1)\}} \subset E^s$.

Domain exchange $\mathcal{E}: \mathcal{R}(i) \mapsto \mathcal{R}(i) + \pi_c(\mathbf{e}_i)$.

Strong coincidence condition: $\forall (i,j) \in A^2$, $\exists n, \exists a \in A$ such that $\sigma^n(i) = p_1 a s_1$, $\sigma^n(j) = p_2 a s_2$ with $|p_1| = |p_2|$.

GIFS and dual substitution

Rauzy fractals

- are compact with non-zero measure.
- are the closure of their interior.
- have fractal boundary with zero measure.
- are self-similar, they obey to certain set equations.

$$\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$$

Prefix graph:

Graph-directed iterated function system (GIFS):

$$\mathcal{R}(a) = \bigcup_{b \stackrel{p}{
ightarrow} a} M_{\sigma} \, \mathcal{R}(b) + \pi_s(\mathbf{I}(p))$$

GIFS and dual substitution

Rauzy fractals

- are compact with non-zero measure.
- are the closure of their interior.
- have fractal boundary with zero measure.
- are self-similar, they obey to certain set equations.

$$\sigma: 1 \mapsto 12, \, 2 \mapsto 13, \, 3 \mapsto 1$$

Prefix graph:

Graph-directed iterated function system (GIFS):

$$\mathcal{R}(1) = M_{\sigma} \mathcal{R}(1) \cup M_{\sigma} \mathcal{R}(2) \cup M_{\sigma} \mathcal{R}(3)$$

$$\mathcal{R}(2) = M_{\sigma} \mathcal{R}(1) + \pi_{s}(\mathbf{e}_{1})$$

$$\mathcal{R}(3) = M_{\sigma} \mathcal{R}(2) + \pi_{s}(\mathbf{e}_{1})$$

Dual action on (d-1)-dimensional faces:

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] \mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3]$$
$$[\mathbf{x}, 2] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1]$$
$$[\mathbf{x}, 3] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2]$$

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] \mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3]$$
$$[\mathbf{x}, 2] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1]$$
$$[\mathbf{x}, 3] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2]$$

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\begin{aligned} \mathbf{E}_{1}^{*}(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi_{s}(\mathbf{e}_{1})), 2] \end{aligned}$$

$$\mathcal{R}(i) = \lim_{n \to \infty} \pi_s(M_\sigma^n \mathbf{E}_1^*(\sigma)^n([\mathbf{0}, i]))$$

Stepped surfaces

Set of coloured points "near" to E^s :

$$\Gamma = \{(\mathbf{x}, a) \in \mathbb{Z}^d \times \mathcal{A} : \mathbf{x} \in (E^s)^{\geq}, \mathbf{x} - \mathbf{e}_a \in (E^s)^{<}\}$$

Stepped surfaces

Set of coloured points "near" to E^s :

$$\Gamma = \{(\mathbf{x}, a) \in \mathbb{Z}^d \times \mathcal{A} : \mathbf{x} \in (E^s)^{\geq}, \mathbf{x} - \mathbf{e}_a \in (E^s)^{<}\}$$

- $\mathbf{E}_1^*(\sigma)(\Gamma) = \Gamma \rightarrow \text{self-replicating property.}$
- Aperiodic translation set (Delone set) for a self-replicating multiple tiling made of Rauzy fractals.
- Geometric representation as an arithmetic discrete model of the hyperplane E^s, whose projection is a polygonal tiling.

Pisot conjecture

Substitutive system

$$(X_{\sigma},S)$$
, where $X_{\sigma}=\overline{\{S^ku:k\in\mathbb{Z}\}}$

Pisot conjecture

Substitutive system

$$(X_{\sigma}, S)$$
, where $X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$

• For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.

$$(X_{\sigma}, S)$$
, where $X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$

- For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.
- Representation map $\varphi: X_{\sigma} \to \mathcal{R}, w_0 w_1 \cdots \mapsto \bigcap_{n \geq 0} \mathcal{R}(w_0 \cdots w_n)$.

$$(X_{\sigma}, S)$$
, where $X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$

- For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.
- Representation map $\varphi: X_{\sigma} \to \mathcal{R}, w_0 w_1 \cdots \mapsto \bigcap_{n \geq 0} \mathcal{R}(w_0 \cdots w_n).$
- Action of S is conjugate to the domain exchange $\mathcal{E}.$

$$(X_{\sigma}, S)$$
, where $X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$

- For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.
- Representation map $\varphi: X_{\sigma} \to \mathcal{R}, w_0 w_1 \cdots \mapsto \bigcap_{n \geq 0} \mathcal{R}(w_0 \cdots w_n).$
- Action of S is conjugate to the domain exchange \mathcal{E} .
- \mathcal{R} induces a periodic tiling of E^s ?

$$(X_{\sigma},S)$$
, where $X_{\sigma}=\overline{\{S^ku:k\in\mathbb{Z}\}}$

- For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.
- Representation map $\varphi: X_{\sigma} \to \mathcal{R}, w_0 w_1 \cdots \mapsto \bigcap_{n \geq 0} \mathcal{R}(w_0 \cdots w_n)$.
- Action of S is conjugate to the domain exchange \mathcal{E} .
- \mathcal{R} induces a periodic tiling of E^s ?

Substitutive system

$$(X_{\sigma}, S)$$
, where $X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$

- For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.
- Representation map $\varphi: X_{\sigma} \to \mathcal{R}, w_0 w_1 \cdots \mapsto \bigcap_{n \geq 0} \mathcal{R}(w_0 \cdots w_n)$.
- Action of S is conjugate to the domain exchange \mathcal{E} .
- \mathcal{R} induces a periodic tiling of E^s ?

The conjugation $(X_{\sigma}, S) \cong (\mathcal{R}, \mathcal{E})$ can be extended to any irreducible unit Pisot substitution satisfying the strong coincidence condition (Arnoux, Ito 2001).

Substitutive system

$$(X_{\sigma}, S)$$
, where $X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$

- For a primitive σ , (X_{σ}, S) is a minimal, uniquely ergodic, zero entropy subshift.
- Representation map $\varphi: X_{\sigma} \to \mathcal{R}$, $w_0 w_1 \cdots \mapsto \bigcap_{n \geq 0} \mathcal{R}(w_0 \cdots w_n)$.
- Action of S is conjugate to the domain exchange \mathcal{E} .
- \mathcal{R} induces a periodic tiling of E^s ?

Pisot conjecture

Let σ be an irreducible unit Pisot substitution. Then (X_{σ}, S) has pure discrete spectrum, or equivalently it is metrically isomorphic to a translation on a torus \mathbb{T}^{d-1} .

Beyond irreducibility

Reducible

 $\#\mathcal{A} > \deg \beta$, char (M_{σ}) splits over \mathbb{Q} in a Pisot polynomial and in a neutral one.

$$\mathbb{R}^d = E^u \oplus E^s \oplus E^n$$

[joint works with B. Loridant, and with X. Bressaud, T. Jolivet]

Hyperbolic

We have a stable-unstable splitting and $dim(E^u) > 1$.

Beyond irreducibility

Reducible

 $\#\mathcal{A} > \deg \beta$, char (M_{σ}) splits over \mathbb{Q} in a Pisot polynomial and in a neutral one.

$$\mathbb{R}^d = E^u \oplus E^s \oplus E^n$$

[joint works with B. Loridant, and with X. Bressaud, T. Jolivet]

Hyperbolic

We have a stable-unstable splitting and $dim(E^u) > 1$.

Tool: higher dimensional duals.

Reducibility

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 3, \ 3 \mapsto 4, \ 4 \mapsto 5, \ 5 \mapsto 1$$

$$\operatorname{char}(M_{\sigma}) = (x^3 - x - 1)(x^2 - x + 1), \quad \mathbb{R}^5 = E^u \oplus E^s \oplus E^n$$

Problems

Framework: reducible Pisot substitutions.

Some problems:

- Pisot conjecture? False: e.g. Thue-Morse.
- No definition as Hausdorff limit of renormalized patches of polygons.
- No geometric representation for stepped surfaces.
- No periodic (multiple) tiling.

We show some solutions to the last three issues.

Higher dimensional dual maps

Recall: $n = \#A > d = \deg(\beta)$.

We want to work with (d-1)-dimensional faces!

The dual map $\mathbf{E}_{n-d+1}^*(\sigma)$ will suit:

$$\mathsf{E}_{n-d+1}^*(\sigma)(\mathsf{x},\underline{a})^* = \sum_{\underline{b} = \underline{\underline{p}} \to a} \left(M_\sigma^{-1}(\mathsf{x} - \mathsf{I}(\underline{p})),\underline{b} \right)^*$$

Higher dimensional dual maps

Recall: $n = \#A > d = \deg(\beta)$.

We want to work with (d-1)-dimensional faces! The dual map $\mathbf{E}_{n-d+1}^*(\sigma)$ will suit:

$$\mathsf{E}_{n-d+1}^*(\sigma)(\mathsf{x},\underline{a})^* = \sum_{\underline{b} \stackrel{\underline{p}}{\longrightarrow} \underline{a}} \left(M_\sigma^{-1}(\mathsf{x} - \mathsf{I}(\underline{p})),\underline{b} \right)^*$$

Remarks:

- $\mathbf{E}_{n-d+1}^*(\sigma)$ acts on $\binom{n}{n-d+1}$ oriented faces.
- If σ is irreducible n=d and $\mathbf{E}_{n-d+1}^*(\sigma)=\mathbf{E}_1^*(\sigma)$.
- $\mathbf{E}_k(\sigma)$ and $\mathbf{E}_k^*(\sigma)$ commute in general with boundary and coboundary operators (Sano, Arnoux, Ito 2001).
- Similar approach for the study of a free group automorphism associated with a complex Pisot root (Arnoux, Furukado, Harriss, Ito 2011).

Let $\mathcal{U} = \{(\mathbf{0}, 2 \wedge 3), (\mathbf{0}, 2 \wedge 4), (\mathbf{0}, 3 \wedge 4)\}$. We have $\mathcal{U} \subset \mathbf{E}_3^*(\sigma)^5(\mathcal{U})$. Consider

$$\Gamma_{\mathcal{U}} = \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U})$$

Let $\mathcal{U}=\{(\mathbf{0},2\wedge 3),(\mathbf{0},2\wedge 4),(\mathbf{0},3\wedge 4)\}$. We have $\mathcal{U}\subset \mathbf{E}_3^*(\sigma)^5(\mathcal{U})$. Consider

$$\Gamma_{\mathcal{U}} = \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U})$$

Let $\mathcal{U}=\{(\mathbf{0},2\wedge3),(\mathbf{0},2\wedge4),(\mathbf{0},3\wedge4)\}$. We have $\mathcal{U}\subset \mathbf{E}_3^*(\sigma)^5(\mathcal{U})$. Consider

$$\Gamma_{\mathcal{U}} = \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U})$$

Let $\mathcal{U}=\{(\mathbf{0},2\wedge3),(\mathbf{0},2\wedge4),(\mathbf{0},3\wedge4)\}$. We have $\mathcal{U}\subset \mathbf{E}_3^*(\sigma)^5(\mathcal{U})$. Consider $\Gamma_{\mathcal{U}}=\bigcup_{k\geq 0}\mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U})$

Let
$$\mathcal{U}=\{(\mathbf{0},2\wedge 3),(\mathbf{0},2\wedge 4),(\mathbf{0},3\wedge 4)\}$$
. We have $\mathcal{U}\subset \mathbf{E}_3^*(\sigma)^5(\mathcal{U})$. Consider
$$\Gamma_{\mathcal{U}}=\bigcup_{k\geq 0}\mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U})$$

Let
$$\mathcal{U}=\{(\mathbf{0},2\wedge 3),(\mathbf{0},2\wedge 4),(\mathbf{0},3\wedge 4)\}$$
. We have $\mathcal{U}\subset \mathbf{E}_3^*(\sigma)^5(\mathcal{U})$. Consider
$$\Gamma_{\mathcal{U}}=\bigcup_{k\geq 0}\mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U})$$

- Projects well: $\mathbf{E}_3^*(\sigma)(\mathbf{0},\underline{a})^*$ does not overlap, $\forall \underline{a}$.
- Geometric finiteness property: $\pi_s(\Gamma_{\mathcal{U}})$ covers $E^s \cong \mathbb{C}$.
- $\pi_s(\Gamma_{\mathcal{U}})$ is a polygonal tiling.

Rauzy fractals:
$$\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \lim_{k \to \infty} \pi_s(M_\sigma^k \mathbf{E}_{n-d+1}^*(\sigma)^k(\mathbf{x},\underline{a})^*).$$

Properties:

if neutral polynomial has only roots of modulus one

$$\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \bigcup_{(\mathbf{y},\underline{b}) \in \mathbf{E}_{n-d+1}^*(\sigma)(\mathbf{x},\underline{a})} M_{\sigma}(\mathcal{R}(\underline{b}) + \pi_s(\mathbf{y})),$$

where the union is measure disjoint.

- compact with nonzero measure.
- closure of the interior.
- boundary has zero measure.

Rauzy fractals: $\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \lim_{k \to \infty} \pi_s(M_\sigma^k \mathbf{E}_{n-d+1}^*(\sigma)^k(\mathbf{x},\underline{a})^*).$

Rauzy fractals: $\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \lim_{k \to \infty} \pi_s(M_\sigma^k \mathbf{E}_{n-d+1}^*(\sigma)^k(\mathbf{x},\underline{a})^*).$

Rauzy fractals: $\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \lim_{k \to \infty} \pi_s(M_\sigma^k \mathbf{E}_{n-d+1}^*(\sigma)^k(\mathbf{x},\underline{a})^*).$

Rauzy fractals: $\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \lim_{k \to \infty} \pi_s(M_\sigma^k \mathbf{E}_{n-d+1}^*(\sigma)^k(\mathbf{x},\underline{a})^*).$

Rauzy fractals: $\mathcal{R}(\underline{a}) + \pi_s(\mathbf{x}) = \lim_{k \to \infty} \pi_s(M_\sigma^k \mathbf{E}_{n-d+1}^*(\sigma)^k(\mathbf{x},\underline{a})^*).$

Recall: the original Hokkaido tile can not tile periodically (Ei, Ito 2005)

$$\mathcal{U} = \{(\mathbf{0}, 2 \wedge 3), (\mathbf{0}, 2 \wedge 4), (\mathbf{0}, 3 \wedge 4)\}.$$

• The patch $\pi_c(\mathcal{U})$ tiles periodically by the lattice

$$\Lambda_{\mathcal{U}} = \pi_c((\mathbf{e}_4 - \mathbf{e}_3)\mathbb{Z} + (\mathbf{e}_4 - \mathbf{e}_2)\mathbb{Z}).$$

Recall: the original Hokkaido tile can not tile periodically (Ei, Ito 2005)

$$\mathcal{U} = \{ (\mathbf{0}, 2 \wedge 3), (\mathbf{0}, 2 \wedge 4), (\mathbf{0}, 3 \wedge 4) \}.$$

• The patch $\pi_c(\mathcal{U})$ tiles periodically by the lattice

$$\Lambda_{\mathcal{U}} = \pi_c((\mathbf{e}_4 - \mathbf{e}_3)\mathbb{Z} + (\mathbf{e}_4 - \mathbf{e}_2)\mathbb{Z}).$$

Recall: the original Hokkaido tile can not tile periodically (Ei, Ito 2005)

$$\mathcal{U} = \{ (\mathbf{0}, 2 \wedge 3), (\mathbf{0}, 2 \wedge 4), (\mathbf{0}, 3 \wedge 4) \}.$$

- The patch π_c(U) tiles periodically by the lattice
 Λ_U = π_c((e₄ - e₃)Z + (e₄ - e₂)Z).
- $\mathcal{R}_{\mathcal{U}} + \Lambda_{\mathcal{U}}$ is a periodic tiling.

Recall: the original Hokkaido tile can not tile periodically (Ei, Ito 2005)

$$\mathcal{U} = \{ (\mathbf{0}, 2 \wedge 3), (\mathbf{0}, 2 \wedge 4), (\mathbf{0}, 3 \wedge 4) \}.$$

- The patch π_c(U) tiles periodically by the lattice
 Λ_U = π_c((e₄ - e₃)Z + (e₄ - e₂)Z).
- $\mathcal{R}_{\mathcal{U}} + \Lambda_{\mathcal{U}}$ is a periodic tiling.
- Do you see the original Hokkaido tile?

Broken lines and morphisms

Being reducible means that some linear dependencies arise when we project the basis vectors $\{\mathbf{e}_a\}_{a\in\mathcal{A}}$ from \mathbb{R}^5 to \mathbb{R}^3 along E^n :

$$\pi(\mathbf{e}_1) = \pi(\mathbf{e}_3) + \pi(\mathbf{e}_4), \quad \pi(\mathbf{e}_5) = \pi(\mathbf{e}_2) + \pi(\mathbf{e}_3)$$

Broken lines and morphisms

Being reducible means that some linear dependencies arise when we project the basis vectors $\{\mathbf{e}_a\}_{a\in\mathcal{A}}$ from \mathbb{R}^5 to \mathbb{R}^3 along E^n :

$$\pi(\mathbf{e}_1) = \pi(\mathbf{e}_3) + \pi(\mathbf{e}_4), \quad \pi(\mathbf{e}_5) = \pi(\mathbf{e}_2) + \pi(\mathbf{e}_3)$$

Combinatorially this is equivalent to applying the morphism

$$\chi: 1 \mapsto 34, \quad 2 \mapsto 2, \quad 3 \mapsto 3, \quad 4 \mapsto 4, \quad 5 \mapsto 32.$$

Project now the vertices of the new broken line...

Broken lines and morphisms

Domain exchange

• $(\mathcal{T}, \mathcal{E}_{\mathcal{T}})$ is a domain exchange on the original Hokkaido tile.

$$\mathcal{E}_{\mathcal{T}}: \mathcal{T}(a) \mapsto \mathcal{T}(a) + \pi_s(\mathbf{e}_a), \ a \in \mathcal{A}$$

• $(\mathcal{R}, \mathcal{E})$ is a *toral translation*, since it induces a periodic tiling of \mathbb{C} .

$$\mathcal{E}: \mathcal{R}(a) \mapsto \mathcal{R}(a) + \pi_s(\mathbf{e}_a), \ a \in \{2, 3, 4\}$$

• $\mathcal{E}_{\mathcal{T}}$ is the first return of \mathcal{E} on \mathcal{T} .

Codings of the domain exchange

Let $\Omega = \overline{\{S^k w : k \in \mathbb{N}\}}$, where $w = \chi(u)$ is the coded fixed point of σ .

We have the following commutative diagram:

$$X_{\sigma} \xrightarrow{\chi} \Omega \xrightarrow{\phi} \mathcal{R} \longrightarrow \mathbb{C}/\Lambda$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

 ϕ measure conjugation.

We can generalize what shown for the family of substitutions

$$\sigma_t: 1 \mapsto 1^{t+1}2, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 1^t5, 5 \mapsto 1$$

 \rightarrow (X_{σ}, S, μ) is the first return of a toral translation.

Remarks

Important hypotheses:

• Projecting well \rightarrow projection of patches onto E^s behaves well.

Remarks

Important hypotheses:

- Projecting well \rightarrow projection of patches onto E^s behaves well.
- \bullet Geometric finiteness property \to covering property for the stepped surface.

Remarks

Important hypotheses:

- Projecting well \rightarrow projection of patches onto E^s behaves well.
- ullet Geometric finiteness property o covering property for the stepped surface.
- \bullet Roots of the neutral polynomial of modulus one \to measure disjointness in the set equation.

Remarks

Important hypotheses:

- Projecting well \rightarrow projection of patches onto E^s behaves well.
- Geometric finiteness property → covering property for the stepped surface.
- Roots of the neutral polynomial of modulus one → measure disjointness in the set equation.
- Positivity: $\bigwedge_{i=1}^k M_\sigma$ can have negative entries. Can we control cancellation? Can we control it using orientation of faces? For Tribo:

$$M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}.$$

Possible definition of positivity: $|M_k|^j = |M_k^j|$, for all $j \in \mathbb{N}$.

Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!

Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!

Figure: Changing suitably the projection we get different polygonal tilings by some faces of three different types.

 Can we generalize these constructions to every reducible Pisot substitution?

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.
- Is $\chi \circ \sigma$ a new (irreducible) substitution?

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.
- Is $\chi \circ \sigma$ a new (irreducible) substitution?
- Influence of the neutral space in the dynamics.

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.
- Is $\chi \circ \sigma$ a new (irreducible) substitution?
- Influence of the neutral space in the dynamics.
- When is a first return of a rotation on a torus again a rotation?

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.
- Is $\chi \circ \sigma$ a new (irreducible) substitution?
- Influence of the neutral space in the dynamics.
- When is a first return of a rotation on a torus again a rotation?
- Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.
- Is $\chi \circ \sigma$ a new (irreducible) substitution?
- Influence of the neutral space in the dynamics.
- When is a first return of a rotation on a torus again a rotation?
- Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)
- Height group.

- Can we generalize these constructions to every reducible Pisot substitution?
- Characterize the points of the stepped surfaces as in the irreducible case.
- Is $\chi \circ \sigma$ a new (irreducible) substitution?
- Influence of the neutral space in the dynamics.
- When is a first return of a rotation on a torus again a rotation?
- Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)
- Height group.
- Pisot conjecture for reducible substitutions?

Strange examples

(Joint with X. Bressaud, T. Jolivet)

The geometric interpretation seems to get harder for other substitutions, not satisfying the strong coincidence condition:

$$\sigma: 1 \mapsto 213, 2 \mapsto 4, 3 \mapsto 5, 4 \mapsto 21$$

 $char(M_{\sigma}) = (x^2 + x + 1)(x^3 - 2x^2 + x - 1)$

Lifting in the neutral space

Projection $\pi_{s,n}: \mathbb{R}^d \to E^s \oplus E^n$.

Lifting in the neutral space

Projection $\pi_{s,n}: \mathbb{R}^d \to E^s \oplus E^n$.

Criterion to know whether we get finitely many layers and NEW strong coincidence condition.

Gluing together

Projecting down suitably we can glue the subtiles together...

Figure: Symbolic splitting associated with the irreducible substitution $\tau: 1 \mapsto 12, 2 \mapsto 32, 3 \mapsto 1$.

... and obtain the connection with an irreducible substitution.

Philosophy: dynamically the reducible substitutive system behaves exactly as the irreducible one, after identifying some letters / changing projection. Technique: symbolic splitting.

Hokkaido again

Figure: Rauzy fractal of the Hokkaido substitution in $E^s \oplus E^n$. The points distribute with logarithmic growth on a two-dimensional lattice.

Hyperbolic case

A self-induced IET substitution

$$\sigma: 1 \mapsto 124, 2 \mapsto 1224, 3 \mapsto 124334, 4 \mapsto 12434$$

$$\mathsf{char}(M_\sigma) = x^4 - 7x^3 + 13x^2 - 7x + 1, \quad \beta_1, \beta_2 > 1, \ \beta_3, \beta_4 < 1$$

Geometric representation \rightarrow two fractal windows generated by

$$\begin{split} \mathbf{E}_{2}(\sigma)(\mathbf{x},\underline{a}) &= \sum_{\underline{a} \xrightarrow{\underline{P}} \underline{b}} \left(M_{\sigma} \mathbf{x} + \mathbf{I}(\underline{p})),\underline{b} \right) \\ \mathbf{E}_{2}^{*}(\sigma)(\mathbf{x},\underline{a})^{*} &= \sum_{\underline{b} \xrightarrow{\underline{P}} \underline{a}} \left(M_{\sigma}^{-1} (\mathbf{x} - \mathbf{I}(\underline{p})),\underline{b} \right)^{*} \end{split}$$

Argue with similar hypotheses as for the reducible case: positivity, projecting-well, geometric finiteness property, etc.

Very complicated to state results in full generality! See Sage...