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0:1—12,2— 13,31
o(l)=12



01 12,2+513,35 1
o?(1) = 1213



0:1—12,213,3—1
o3(1) = 1213121



c:112,213,31
o*(1) = 1213121121312



c:112,213, 31
o5(1) = 121312112131212131211213



0:1—12,213,3—1
0>°(1) = 121312112131212131211213 - - - € {1,2,3}"



0:1—12,213,3—1
0>°(1) = 121312112131212131211213 - - - € {1,2,3}"



0:1—12,213,3—1
0>°(1) = 121312112131212131211213 - - - € {1,2,3}"

M. = (

B > 1 Pisot root o

111 32
! 8)’ f(x)=x>—x"—x-1
f

~ O

(x) : 18] < 1, VB Galois conjugate of 3

o is an irreducible unimodular Pisot substitution.



M,-invariant decomposition: R3=E“® Es~R®C.
Broken line (balanced): 0°°(1) = €121312112131212131211213- - -.

R = Ujca R(i) where R(i) = {ms(I(p)) : pi prefix of o>°(1)} C E*.
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M, -invariant decomposition:

R3=E'QE=R@C.
Broken line (balanced): 0°°(1) = 121312112131212131211213- - -.

R = Ujca R(i) where R(i) = {ms(I(p)) : pi prefix of o>°(1)} C E*.

b
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M,-invariant decomposition: R3=E“® Es~R®C.
Broken line (balanced): 0°°(1) = 121312112131212131211213- - -.

R = Ujca R(i) where R(i) = {ms(I(p)) : pi prefix of o>°(1)} C E*.




E'aEc=2RaC.

R® —

Broken line (balanced): 0°°(1) = 121312112131212131211213- - -.

M, -invariant decomposition:

Uica R(i) where R(i) = {ms(I(p)) : pi prefix of 0>°(1)} C E*.

R =




The Rauzy fractal

R3=F‘'®Es>2RqpC.

M, -invariant decomposition:

121312112131212131211213 - - - .

(1) =

oo

Broken line (balanced): o

Rauzy fractal

(1)} Cc Es.

. pi prefix of o>

)

(p

(

(i) = {7Ts

where R

Uica R(0)

R =




The Rauzy fractal
M,-invariant decomposition: R3=E“® Es~R®C.
Broken line (balanced): (1) = 121312112131212131211213- - -.

Rauzy fractal
R = Uica R(i) where R(i) = {ms(I(p)) : pi prefix of 0>°(1)} C E®.




The Rauzy fractal
M,-invariant decomposition: R3=E“® Es~R®C.
Broken line (balanced): (1) = 121312112131212131211213- - -.

Rauzy fractal
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The Rauzy fractal
M,-invariant decomposition: R3=E“® Es~R®C.
Broken line (balanced): (1) = 121312112131212131211213- - -.

Rauzy fractal
R = Uica R(i) where R(i) = {ms(I(p)) : pi prefix of 0>°(1)} C E®.

1

Domain exchange & : R(i) — R(i) + mc(e;).



The Rauzy fractal
M,-invariant decomposition: R3=E“® Es~R®C.
Broken line (balanced): (1) = 121312112131212131211213- - -.
Rauzy fractal
R = U;ica R(i) where R(i) = {ms(I(p)) : pi prefix of 0>°(1)} C E®.

Domain exchange & : R(i) — R(i) + m(e;).

Strong coincidence condition: V (i,j) € A%, 3n, Ja € A such that
o"(i) = prasi, 0"(j) = p2as, with |p1| = |pa].



GIFS and dual substitution

Rauzy fractals

e are compact with non-zero measure.

are the closure of their interior.

e have fractal boundary with zero measure.

are self-similar, they obey to certain set equations.

c:1—12,2+—13,3—1

Prefix graph: Graph-directed iterated function

system (GIFS):

1 = |J M, R(b) + 7.(I(p))
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GIFS and dual substitution

Rauzy fractals

e are compact with non-zero measure.
e are the closure of their interior.
e have fractal boundary with zero measure.

e are self-similar, they obey to certain set equations.

c:1—12,2+—13,3—1

Prefix graph: Graph-directed iterated function

system (GIFS):

! 1 R(1) = M, R(1) UM, R(2) UM, R(3)
. R(2) = M, R(1) + 7s(e1)
€ 46—@ R(3) = M,R(2) + 7s(e1)



Dual action on (d — 1)-dimensional faces:

Ei(0) : [x,1] = [M; x, 1] U [M; *x,2] U [M, !x, 3]
[x,2] — [M;1(x + ms(e1)), 1]
[x,3] — [M;1(x + ms(e1)), 2]




E;(0) : [x,1] = [M;*x,1] U [M, x,2] U [M, 1x, 3]
[x,2] = [M;*(x + ms(e1)), 1]
[x,3] = [M;(x + ms(e1)), 2]




Ei(0) : [x,1] = [M;*x,1] U [M, x,2] U [M, x,3]
[x,2] = [M;1(x + 7s(e1)), 1]
[x,3] — [M; 1 (x + 7s(e1)), 2]




E;(0) : [x,1] = [M;*x,1] U [M, x,2] U [M, x,3]
[x,2] — [M;(x + 7s(e1)), 1]
[x,3] = [M, 1 (x + 7s(e1)), 2]




Ei(0) : [x,1] = [M;*x,1] U [M, x,2] U [M, x,3]
[x,2] = [M;1(x + 7s(e1)), 1]
[x,3] — [M; 1 (x + 7s(e1)), 2]




Ei(0) : [x,1] — [M;1x, 1] U [M;x,2] U [M, 1x, 3]
[x,2] = [M;(x + ms(e1)), 1]
[x,3] = [M, (x + 7ms(e1)), 2]




Ei(0) : [x,1] — [M;1x, 1] U [M; *x,2] U [M, 1x, 3]
[x,2] = [M,*(x + ms(er)), 1]
[x,3] = [M,*(x + ms(e1)), 2]




E;(0) : [x,1] = [M;*x,1] U [M, x,2] U [M, x,3]
[x,2] = [M; 1 (x + 7s(e1)), 1]
[x,3] = [M;1(x + 7s(e1)), 2]




E;(0) : [x, 1] = [M;*x,1] U [M, x,2] U [M, x,3]
[x,2] — [M; 1 (x + 7s(e1)), 1]
[x,3] = [M;1(x + 7s(e1)), 2]

R(i) = lim ms(M} Ei(0)"(0, 1))



Set of coloured points “near” to E*:

M={(x,a) €29 x A:x € (E)Z,x—e, € (E)"}



Set of coloured points “near” to E*:
Fr={(x,a)€Z¢ x A:x e (E)Z,x—e, € (E5)<}

e Ei(0)(I') =T — self-replicating property.

e Aperiodic translation set (Delone set) for a self-replicating multiple
tiling made of Rauzy fractals.

e Geometric representation as an arithmetic discrete model of the
hyperplane E*, whose projection is a polygonal tiling.




(X5, S), where X, = {Sku: k € Z}



(X5, S), where X, = {Sku: k € Z}

e For a primitive o, (X, S) is a minimal, uniquely ergodic, zero
entropy subshift.
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e For a primitive o, (X, S) is a minimal, uniquely ergodic, zero
entropy subshift.

e Representation map ¢ : X, = R, wowy -+ = [),50 R(Wo - - - Wp).

e Action of S is conjugate to the domain exchange :S'

e R induces a periodic tiling of E* 7



Pisot conjecture

Substitutive system
(X5, S), where X, = {Sku: ke Z}

e For a primitive o, (X5, S) is a minimal, uniquely ergodic, zero
entropy subshift.

e Representation map ¢ : X, = R, wowy - -+ = [),50 R(Wo - - - wp).

e Action of S is conjugate to the domain exchange E.

e R induces a periodic tiling of E* 7




Pisot conjecture

Substitutive system
(X5, S), where X, = {Sku: k € Z}

e For a primitive o, (X5, S) is a minimal, uniquely ergodic, zero
entropy subshift.

e Representation map ¢ : X, = R, wowy -+ = [),50 R(Wo - - - wy).

e Action of S is conjugate to the domain exchange €£.

e R induces a periodic tiling of E* 7
X, —= R ——> E5/A
|
X, —= R ——> E5/A

The conjugation (X,,S) 2 (R, £) can be extended to any irreducible
unit Pisot substitution satisfying the strong coincidence condition
(Arnoux, Ito 2001).



Pisot conjecture

Substitutive system
(X5, S), where X, = {Sku: k € Z}

e For a primitive o, (X, S) is a minimal, uniquely ergodic, zero
entropy subshift.

e Representation map ¢ : X, = R, wowy -+ = [),50 R(Wo - - - wy).

e Action of S is conjugate to the domain exchange &.

e R induces a periodic tiling of E* 7

Pisot conjecture

Let o be an irreducible unit Pisot substitution. Then (X,,S) has pure
discrete spectrum, or equivalently it is metrically isomorphic to a
translation on a torus T91.



#A > deg 3, char(M,) splits over Q in a Pisot polynomial and in a

neutral one.
RY=E'@QE DE"

[joint works with B. Loridant, and with X. Bressaud, T. Jolivet]

We have a stable-unstable splitting and dim(E*) > 1.



#A > deg 3, char(M,) splits over Q in a Pisot polynomial and in a

neutral one.
RY=E'@QE DE"

[joint works with B. Loridant, and with X. Bressaud, T. Jolivet]

We have a stable-unstable splitting and dim(E*) > 1.

Tool: higher dimensional duals.



c:1—12,2—3,3—4,4—5 5—1
char(M,) = (x®* —x—1)(x* = x+1), R°=E'QE‘QE"

Projecting the vertices of the broken line .i.234 >t zizi e




Problems

Framework: reducible Pisot substitutions.

Some problems:

e Pisot conjecture? False: e.g. Thue-Morse.
e No definition as Hausdorff limit of renormalized patches of polygons.
e No geometric representation for stepped surfaces.

e No periodic (multiple) tiling.

We show some solutions to the last three issues.



Recall: n=#A > d = deg(5).

We want to work with (d — 1)-dimensional faces!
The dual map E_ (o) will suit:

Erar1(0)(x2)" = Y (M, ' (x—1(p)). )’

P
b—a



Higher dimensional dual maps

Recall: n=#A > d = deg(p).

We want to work with (d — 1)-dimensional faces!
The dual map E;_ (o) will suit:

rear1(@)(xa)" = > (M, (x—1(p)), b)°

P
b—a

Remarks:
e E'_,..(0)actson (FZH) oriented faces.
e If o is irreducible n = d and E;_, (o) = Ej(0).
e Ei (o) and Ef(0) commute in general with boundary and
coboundary operators (Sano, Arnoux, lto 2001).

e Similar approach for the study of a free group automorphism
associated with a complex Pisot root
(Arnoux, Furukado, Harriss, Ito 2011).



Let & = {(0,213),(0,2A4),(0,3A4)}. We have U C E3(0)>(U).

M= J E3(0)* )

k>0

Consider




Let & = {(0,213),(0,2A4),(0,3A4)}. We have U C E3(0)>(U).

M= J E3(0)* )

k>0

Consider




Let 2 = {(0,2 A 3),(0,2 A 4),(0,3 A 4)}. We have U C E3(o)°(U).

Mu = J E3(0)* )

k>0

Consider




Let & = {(0,213),(0,2A4),(0,3A4)}. We have U C E3(0)>(U).

My = J E3(0)* (W)

k>0

Consider




(0,21 4),(0,3A4)}. We have U C E3(0)>(U).

)

)

= {(0,273

Let U

Consider

)

u

(

fu = E5(0)*




Let 2 = {(0,2 A 3),(0,2 A 4),(0,3 A 4)}. We have U C E5(a)5(U).

M = J E3(0)* W)

k>0

Consider

o Projects well: E5(0)(0,a)*
does not overlap, Va.

e Geometric finiteness property:
ms(Ty) covers E° = C.

o 75(ly) is a polygonal tiling.




Rauzy fractals and tilings

Rauzy fractals: R(a) + ms(x) = limy_o0 ms(ME Ef_ g, 1(0) (%, 2)*).
Properties:

e if neutral polynomial has only roots of modulus one

R(a) + ms(x) = U My (R(b) + 7s(y)),
(y:b)EE;_ 4,1 (0)(x,2)
where the union is measure disjoint.
e compact with nonzero measure.
e closure of the interior.

e boundary has zero measure.



Rauzy fractals: R(a) + ms(x) = limi_yoo Ts(MEE%_ 111 (0) (%, 2)").

The collection {R(a) + ms(x) : (x,a)* € Iy} is a self-replicating tiling.
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Rauzy fractals: R(a) + ms(x) = limy_yoo Ts(MEE%_ ;11 (0) (%, 2)*).

The collection {R(a) + ms(x) : (x,a)* € Iy} is a self-replicating tiling.




Recall: the original Hokkaido tile can not tile periodically (Ei, lto 2005)

U=1{(0,213),(0,2A4),(0,3A4)}.

e The patch 7. (Uf) tiles periodically by
the lattice
Ny = 7TC((G4 — e3)Z + (e4 — ez)Z).
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Recall: the original Hokkaido tile can not tile periodically (Ei, lto 2005)

U=1{(0,213),(0,2A4),(0,3A4)}.

e The patch 7. (U) tiles periodically by
the lattice
/\u = ’/TC((E4 — 83)Z + (34 — ez)Z).

o Ry + Ny is a periodic tiling.




Recall: the original Hokkaido tile can not tile periodically (Ei, lto 2005)

U=1{(0,213),(0,2A4),(0,3A4)}.

e The patch 7. (U) tiles periodically by
the lattice
/\u = ’/TC((E4 — 83)Z + (34 — ez)Z).

o Ry + Ny is a periodic tiling.

e Do you see the original Hokkaido tile?




Being reducible means that some linear dependencies arise when we
project the basis vectors {e,}.c4 from R® to R® along E™:

w(e1) = m(es3) + w(es), w(es)=m(e2)+ 7(es)



Broken lines and morphisms

Being reducible means that some linear dependencies arise when we
project the basis vectors {e,},c4 from R® to R? along E™:

m(e1) = m(es) + w(es), w(es)=m(ex)+ m(es)
Combinatorially this is equivalent to applying the morphism

x:1— 34, 2— 2 3—3 4~ 4, 5L~ 32

12345 1 12123

] e ——— p— ]|

3423432343423423

Project now the vertices of the new broken line. ..






e (T,E7) is a domain exchange on the
original Hokkaido tile.

Er:T(a)— T(a)+ms(e,), ac A

e (R,E&) is a toral translation, since it
induces a periodic tiling of C.

£:R(a) = R(a)+ms(es), a€ {2,3,4}

e £t is the first return of £ on T.




Codings of the domain exchange

Let Q = {Skw : k € N}, where w = x(u) is the coded fixed point of o.

We have the following commutative diagram:

X, Xe0-2.R C/A
Sl S\L El E\L
X, X0 2oR C/A

¢ measure conjugation.

We can generalize what shown for the family of substitutions
op: 1— 1712 253 34, 415, 5—1

— (X5, S, 1) is the first return of a toral translation.



Important hypotheses:

e Projecting well — projection of patches onto E° behaves well.
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Important hypotheses:

e Projecting well — projection of patches onto E° behaves well.
e Geometric finiteness property — covering property for the stepped
surface.

e Roots of the neutral polynomial of modulus one — measure
disjointness in the set equation.



Remarks

Important hypotheses:

e Projecting well — projection of patches onto E° behaves well.

e Geometric finiteness property — covering property for the stepped
surface.

e Roots of the neutral polynomial of modulus one — measure
disjointness in the set equation.

e Positivity: /\f-(:1 M, can have negative entries.
Can we control cancellation? Can we control it using orientation of
faces? For Tribo:

110 -1 11
M1:(101), M2:<—1 0 o).
100 0 —-10

Possible definition of positivity: |Ml = \M{(| for all j € N.



Guiding philosophy: try to turn the substitution into an irreducible one!




Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!

Figure: Changing suitably the projection we get different polygonal tilings by
some faces of three different types.
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e Characterize the points of the stepped surfaces as in the irreducible
case.

e Is x oo a new (irreducible) substitution?
e Influence of the neutral space in the dynamics.

e When is a first return of a rotation on a torus again a rotation?



Perspectives

e Can we generalize these constructions to every reducible Pisot
substitution?

e Characterize the points of the stepped surfaces as in the irreducible
case.

e Is x oo a new (irreducible) substitution?
e Influence of the neutral space in the dynamics.
e When is a first return of a rotation on a torus again a rotation?

e Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)



Perspectives

e Can we generalize these constructions to every reducible Pisot
substitution?

e Characterize the points of the stepped surfaces as in the irreducible
case.

e Is x oo a new (irreducible) substitution?

e Influence of the neutral space in the dynamics.

e When is a first return of a rotation on a torus again a rotation?
e Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)

e Height group.



Perspectives

e Can we generalize these constructions to every reducible Pisot
substitution?

e Characterize the points of the stepped surfaces as in the irreducible
case.

e Is x oo a new (irreducible) substitution?

e Influence of the neutral space in the dynamics.

e When is a first return of a rotation on a torus again a rotation?
e Links with cohomology? (Barge, Bruin, Jones, Sadun 2012)

e Height group.

e Pisot conjecture for reducible substitutions?



(Joint with X. Bressaud, T. Jolivet)

The geometric interpretation seems to get harder for other substitutions,
not satisfying the strong coincidence condition:

0:1—213,2—4,3+—5,4—21
char(M,) = (x* + x +1)(x® = 2x®> + x — 1)




Projection 75, : RY — E* @ E".




Lifting in the neutral space

Projection 75, : R — ES & E™.

Criterion to know whether we get finitely many layers and NEW strong
coincidence condition.



Gluing together

Projecting down suitably we can glue the subtiles together. ..

Figure: Symbolic splitting associated with the irreducible substitution
7:1—12,2+ 32,3 1.

... and obtain the connection with an irreducible substitution.

Philosophy: dynamically the reducible substitutive system behaves
exactly as the irreducible one, after identifying some letters / changing
projection. Technique: symbolic splitting.



N oo e,
win, MRS ZE o .
e e R R, I T e,

. ey IR LI B e TS
PO au‘.",'cs-. *:“‘-;. - o e
N X T
. i L

Figure: Rauzy fractal of the Hokkaido substitution in E° @ E". The points
distribute with logarithmic growth on a two-dimensional lattice.



Hyperbolic case

A self-induced |IET substitution

o1 124,25 1224,3 15 124334, 4 s 12434
Chal’(/\/lg):X4—7X3—|-13X2—7X-i-17 B1,082>1, B3,84, <1

Geometric representation — two fractal windows generated by

Ex(0)(x.a) = Y (Myx+1(p)). b)

o
a—b

E3(0)(x,a)" = D> (M, (x—1(p)), b)"

-
b—a

Argue with similar hypotheses as for the reducible case: positivity,
projecting-well, geometric finiteness property, etc.

Very complicated to state results in full generality! See Sage. ..



