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Homomorphism spaces

Markov random fields and Gibbs states

When are Markov random fields Gibbs states?

Describing conditions on the support

All Markov random fields are Gibbs: Dismantlable graphs and
the 3-coloured chessboard
Not all Markov random fields are Gibbs: The square island shift

The pivot property



Some Notation and Setting

G = (VG , EG) is a locally-finite undirected graph.

A is a finite set of symbols.

X ⊂ AVG is a closed set

For a finite set A ⊂ VG and a pattern a : A −→ A,

[a]A := {x ∈ X | x |A = a} (Cylinder set)

∂A := {v ∈ VG \ A | v ∼ w ∈ A} (Boundary).
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Homomorphism Spaces

H = (VH, EH) is a finite undirected graph without multiple
edges.

X = Hom(Zd ,H) is the space of all graph homomorphisms
from Zd to H.

Examples: (The 3-coloured chessboard)

HGraph 

A Pattern



Homomorphism Spaces

H = (VH, EH) is a finite undirected graph without multiple
edges.

X = Hom(Zd ,H) is the space of all graph homomorphisms
from Zd to H.

Examples: (The 3-coloured chessboard)

HGraph 

A Pattern



Homomorphism Spaces

H = (VH, EH) is a finite undirected graph without multiple
edges.

X = Hom(Zd ,H) is the space of all graph homomorphisms
from Zd to H.

Examples: (The 3-coloured chessboard)

HGraph 

A Pattern



Homomorphism Spaces

H = (VH, EH) is a finite undirected graph without multiple
edges.

X = Hom(Zd ,H) is the space of all graph homomorphisms
from Zd to H.

Examples: (The 3-coloured chessboard)

HGraph 

A Pattern



Homomorphism Spaces

H = (VH, EH) is a finite undirected graph without multiple
edges.

X = Hom(Zd ,H) is the space of all graph homomorphisms
from Zd to H.

Examples: (The 3-coloured chessboard)

HGraph 

A Pattern



Homomorphism Spaces

H = (VH, EH) is a finite undirected graph without multiple
edges.

X = Hom(Zd ,H) is the space of all graph homomorphisms
from Zd to H.

Examples: (Hard square model)
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1 1
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Safe Symbol

X has a safe symbol ? if for all x ∈ X and n ∈ VG , the
configuration y given by

ym =

{
xm if m 6= n

? if m = n

is an element of X .

The space X = Hom(Zd ,H) has a safe symbol ? if and only if for
all v ∈ H, ? ∼ v .
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Safe Symbol

X has a safe symbol ? if for all x ∈ X and n ∈ VG , the
configuration y given by

ym =

{
xm if m 6= n

? if m = n

is an element of X .

The space X = Hom(Zd ,H) has a safe symbol ? if and only if for
all v ∈ H, ? ∼ v . Thus 0 is a safe symbol for the hard square
model but the 3-coloured chessboard model does not have any safe
symbol.



Markov Random Fields

A Markov random field (MRF) is a probability measure µ on AVG

such that for all finite A, B ⊂ VG , ∂A ⊂ B ⊂ Ac and
a ∈ AA, b ∈ AB satisfying µ([b]B) > 0

µ([a]A

∣∣∣ [b]B) = µ([a]A

∣∣∣ [b]∂A).
−Elements of A

−Elements of B

−Elements of the

boundary of A

The set of conditional measures µ([·]A
∣∣∣ [b]∂A) for all A ⊂ VG

finite and b ∈ A∂A is called the specification for the measure µ. It
might not have any finite description.
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Gibbs States

A nearest neighbour (n.n.) interaction on X

is a function

V : {[a]A | A is an edge or vertex in G} −→ R.

A Gibbs state with a n.n. interaction V is a Markov random field µ
such that for all x ∈ supp(µ) and finite set A ⊂ VG

µ([x ]A

∣∣∣ [x ]∂A) =

∏
C⊂A∪∂A

eV ([x ]C )

ZA,x |∂A

where ZA,x |∂A is the uniquely determined normalising factor
dependent upon A and x |∂A.

If G = Zd the specification of a Gibbs state with a shift-invariant
n.n. interaction has a finite description: all we need is the
interaction V .
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Gibbs States

Example: If a shift-invariant n.n. interaction on the hard square
model is given by

0 0

Graph H

Interaction V

0 1

0 1

that is,

V ([00]~0,~ei ) = V ([10]~0,~ei ) = V ([01]~0,~ei ) = 0,

V ([0]~0) = 0 and V ([1]~0) = 1

then

µ([x ]A

∣∣∣ [x ]∂A) = ∏
C⊂A∪∂A

eV ([x ]C )

ZA,x |∂A
=

enumber of 1′s in x |A∪∂A

ZA,x |∂A
.
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Question: Under what conditions on the support is every MRF a
Gibbs state for some n.n. interaction?



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)

Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)

For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)

For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.

A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Positive Results

Conditions on the support such that every MRF is Gibbs for some
n.n. interaction

The support has a safe symbol: Hammersley and Clifford (’71)
Algebraic conditions on the support and G is a finite graph:
Sturmfels, Gieger and Meek (’06)
Conditions on the graph G: Lauritzen (’96)
For shift-invariant measures and G = Z under some mixing
conditions on the support (but infinite set of symbols):
Georgii (’88)
For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov (’11)

New Results:

The support is the 3-coloured chessboard model.
A generalisation of the Hammersley-Clifford theorem when G
is bipartite.



Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:

When G is a finite graph: Moussouris (’74)

When G = Z and the measure is not shift-invariant:
Dobrushin (’68)

When the alphabet is countable: Georgii (’88)

New Results:

For G = Z2 we constructed a family of shift-invariant MRFs
which are not Gibbs for any shift-invariant finite-range
interaction (not just nearest neighbour).
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Dismantlable Graphs

Consider an undirected finite graph H.

N(v) denotes the
neighbourhood of v in H, that is,

N(v) = {s ∈ H | s ∼ v}.

H can be folded to a graph H \ {v} if there exists a vertex
w ∈ H such that N(v) ⊂ N(w). H is dismantlable if there is a
sequence of iterative folds H = H1,H2 . . . ,Hn such that Hn is a
single vertex (with or without a loop).
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If Hom(Zd ,H) has a safe symbol ? then for all vertices v ∈ VH,
N(v) ⊂ N(?) = VH and thus all vertices v can be folded into ?.
Then H is dismantlable.
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If Hom(Zd ,H) has a safe symbol ? then for all vertices v ∈ VH,
N(v) ⊂ N(?) = VH and thus all vertices v can be folded into ?.
Then H is dismantlable.

And there are graphs where no folding is possible. Let Cn denote
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New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If H is either

Cn for some n or

dismantlable

then any MRF on Hom(Zd ,H) is a Gibbs state for some n.n.
interaction. Further if the MRF is shift-invariant then it is a Gibbs
state for some shift-invariant n.n. interaction.

In fact we prove further and generalise the Hammersley-Clifford
theorem when the underlying graph G is bipartite.

How can such a theorem be proved?
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Pivot Property

A space X is said to satisfy the pivot property if for all x , y ∈ X
which differ only on finitely many sites there exists a chain
x = x1, x2, x3, . . . , xn = y ∈ X such that x i , x i+1 differ on at most
a single site.

A space X is said to satisfy the generalised pivot property if there
exists K > 0 such that for all x , y ∈ X which differ only on finitely
many sites there exists a chain x = x1, x2, x3, . . . , xn = y ∈ X
such that x i , x i+1 differ only on a region of diameter at most K .

Examples:

Hom(Zd ,H) when H is dismantlable.

Hom(Zd ,H) when H does not have a four-cycle.

Domino tilings.
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The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.
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Suppose µ is a Markov random field whose support has the pivot
property.

Then given x , y ∈ supp(µ) that differ exactly on F there
exists a chain x = x1, x2, . . . , xn = y where x i , x i+1 differ exactly
at a site mi ∈ Z2 and consequently

µ([x ]F | [x ]∂F )
µ([y ]F | [x ]∂F )

=
n−1
∏
i=1

µ([x i ]F | [x i ]∂F )

µ([x i+1]F | [x i ]∂F )

=
n−1
∏
i=1

µ([x i ]mi | [x i ]∂mi
)

µ([x i+1]mi | [x i ]∂mi
)

.

Therefore the entire specification is determined by finitely many

parameters viz.
µ([x ]0∪∂0)
µ([y ]0∪∂0)

for configurations x , y which differ only at

0, the origin.

Thus the space of specifications on supp(µ) can be parametrised
by finitely many parameters.
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Question: Suppose we are given a nearest neighbour shift of
finite type with the pivot property. Is there an algorithm to
determine the number of parameters which describes the
specification?



A specification supported on the 3-coloured chessboard is
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. If µ is a Gibbs measure with nearest neighbour

interaction V then

v1 = exp(V (01) + V (10) + V ( 01 ) + V ( 01 )

−V (21)− V (12)− V ( 21 )− V ( 12 )),

v2 = exp(V (12) + V (21) + V ( 21 ) + V ( 12 )

−V (02)− V (20)− V ( 02 )− V ( 20 )),

v3 = exp(V (02) + V (20) + V ( 20 ) + V ( 02 )

−V (01)− V (10)− V ( 01 )− V ( 10 )).

µ is Gibbs if and only if v1v2v3 = 1.
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Therefore the Hammersley-Clifford type conclusion fails for
specifications of the 3-coloured chessboard

but every fully
supported Markov random field corresponds to the parameters
satisfying v1v2v3 = 1.

Thus the Hammersley-Clifford type conclusion holds for fully
supported measures.

What if the pivot property does not hold? Every 1 dimensional
nearest neighbour shift of finite type has the generalised pivot
property.
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Square Island Shift

Inspired by the checkerboard island shift by Quas and Şahin we
constructed

the square island shift; it is a space of configurations
X on Z2 which look like
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There are two kinds of squares: ones with red dots and ones
without red dots which float in a sea of blanks.
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New Results

There are infinitely many independent parameters required to
describe a specification of a shift-invariant MRF on the square
island shift, for instance, the ratios of the probabililty of a big
square with red dots and the probability of a square of the same
size without red dots. It does not have the generalised pivot
property

Theorem (Chandgotia and Meyerovitch ‘13)

There exists a shift-invariant MRF supported on the square island
shift which is not Gibbs for any shift-invariant finite-range
interaction.

Is there a more natural example?
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Theorem (Tim Austin ‘15)

There is a graph H for which Hom(Z2,H) does not have the
generalised pivot property.

Question: Is there a shift-invariant Markov random field which is
supported on Hom(Z2,H) which is not Gibbs for some
shift-invariant finite range interaction?

Question: Can you classify graphs H for which Hom(Z2,H) does
not have the generalised pivot property?

Question: If Hom(Z2,H) has the generalised pivot property, can
you determine the minimum number of parameters required to
determine the specification of a Markov random field?
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Thank You!


