Markov Random Fields and Gibbs States

Nishant Chandgotia

Tel Aviv University

June, 2016
Outline

- Homomorphism spaces
- Markov random fields and Gibbs states
- When are Markov random fields Gibbs states?
- Describing conditions on the support
 - All Markov random fields are Gibbs: Dismantlable graphs and the 3-coloured chessboard
 - Not all Markov random fields are Gibbs: The square island shift
- The pivot property
Some Notation and Setting

$G = (V_G, E_G)$ is a locally-finite undirected graph.

A is a finite set of symbols.

$X \subset A$.

V_G is a closed set.

For a finite set $A \subset V_G$ and a pattern $a : A \rightarrow A$, $\[a\]_A = \{x \in X | x|_A = a\}$ (Cylinder set).

$\partial A = \{v \in V_G \setminus A | v \sim w \in A\}$ (Boundary).
Some Notation and Setting

- $\mathcal{G} = (\mathcal{V}_G, \mathcal{E}_G)$ is a locally-finite undirected graph.
Some Notation and Setting

- $G = (V_G, E_G)$ is a locally-finite undirected graph.
- \mathcal{A} is a finite set of symbols.
Some Notation and Setting

- $\mathcal{G} = (\mathcal{V}_G, \mathcal{E}_G)$ is a locally-finite undirected graph.
- \mathfrak{A} is a finite set of symbols.
- $X \subset \mathfrak{A}^{\mathcal{V}_G}$ is a closed set
Some Notation and Setting

- $G = (\mathcal{V}_G, \mathcal{E}_G)$ is a locally-finite undirected graph.
- \mathcal{A} is a finite set of symbols.
- $X \subset \mathcal{A}^{\mathcal{V}_G}$ is a closed set.
- For a finite set $A \subset \mathcal{V}_G$ and a pattern $a : A \rightarrow \mathcal{A}$,

\begin{itemize}
 \item $[a]_A = \{ x \in X | x|_{A} = a \}$ (Cylinder set)
 \item $\partial A : = \{ v \in \mathcal{V}_G \setminus A | v \sim w \in A \}$ (Boundary).
\end{itemize}

- Elements of A
Some Notation and Setting

- \(\mathcal{G} = (\mathcal{V}_G, \mathcal{E}_G) \) is a locally-finite undirected graph.
- \(\mathcal{A} \) is a finite set of symbols.
- \(X \subset \mathcal{A}^{\mathcal{V}_G} \) is a closed set
- For a finite set \(A \subset \mathcal{V}_G \) and a pattern \(a : A \rightarrow \mathcal{A} \),
 \[
 [a]_A := \{ x \in X \mid x|_A = a \} \quad \text{(Cylinder set)}
 \]

Elements of \(A \)

Cylinder set \([4,3,1]_A\)
Some Notation and Setting

- $\mathcal{G} = (\mathcal{V}_G, \mathcal{E}_G)$ is a locally-finite undirected graph.
- \mathbb{A} is a finite set of symbols.
- $X \subset \mathbb{A}^{\mathcal{V}_G}$ is a closed set
- For a finite set $A \subset \mathcal{V}_G$ and a pattern $a : A \to \mathbb{A}$,
 \[
 [a]_A := \{ x \in X \mid x|_A = a \} \text{ (Cylinder set)}
 \]
 \[
 \partial A := \{ v \in \mathcal{V}_G \setminus A \mid v \sim w \in A \} \text{ (Boundary)}.
 \]

- Elements of A
- Elements of the boundary of A
Homomorphism Spaces

$H = (V_H, E_H)$ is a finite undirected graph without multiple edges.

$X = \text{Hom}(Z^d, H)$ is the space of all graph homomorphisms from Z^d to H.

Examples: (The 3-coloured chessboard)
Homomorphism Spaces

- $\mathcal{H} = (\mathcal{V}_\mathcal{H}, \mathcal{E}_\mathcal{H})$ is a finite undirected graph without multiple edges.
Homomorphism Spaces

- $\mathcal{H} = (\mathcal{V}_H, \mathcal{E}_H)$ is a finite undirected graph without multiple edges.
- $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is the space of all graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.
Homomorphism Spaces

- $\mathcal{H} = (V_{\mathcal{H}}, E_{\mathcal{H}})$ is a finite undirected graph without multiple edges.
- $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is the space of all graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.

Examples: (The 3-coloured chessboard)
Homomorphism Spaces

- $\mathcal{H} = (\mathcal{V}_H, \mathcal{E}_H)$ is a finite undirected graph without multiple edges.
- $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is the space of all graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.

Examples: (The 3-coloured chessboard)
Homomorphism Spaces

- $\mathcal{H} = (\mathcal{V}_H, \mathcal{E}_H)$ is a finite undirected graph without multiple edges.
- $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is the space of all graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.

Examples: (Hard square model)
Homomorphism Spaces

- $\mathcal{H} = (\mathcal{V}_\mathcal{H}, \mathcal{E}_\mathcal{H})$ is a finite undirected graph without multiple edges.
- $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is the space of all graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.

Examples: (Hard square model)
Safe Symbol
Safe Symbol

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_G$, the configuration y given by

$$y_m = \begin{cases} x_m & \text{if } m \neq n \\ \star & \text{if } m = n \end{cases}$$

is an element of X.
Safe Symbol

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_G$, the configuration y given by

$$y_m = \begin{cases} x_m & \text{if } m \neq n \\ \star & \text{if } m = n \end{cases}$$

is an element of X.

The space $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star if and only if for all $v \in \mathcal{H}$, $\star \sim v$.
Safe Symbol

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_G$, the configuration y given by

$$y_m = \begin{cases}
 x_m & \text{if } m \neq n \\
 \star & \text{if } m = n
\end{cases}$$

is an element of X.

The space $X = \text{Hom}(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star if and only if for all $\nu \in \mathcal{H}$, $\star \sim \nu$. Thus 0 is a safe symbol for the hard square model.
Safe Symbol

X has a safe symbol \star if for all $x \in X$ and $n \in V_G$, the configuration y given by

$$y_m = \begin{cases}
 x_m & \text{if } m \neq n \\
 \star & \text{if } m = n
\end{cases}$$

is an element of X.

The space $X = Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star if and only if for all $v \in \mathcal{H}$, $\star \sim v$. Thus 0 is a safe symbol for the hard square model but the 3-coloured chessboard model does not have any safe symbol.
A Markov random field (MRF) is a probability measure μ on A^ν_g.

Markov Random Fields
Markov Random Fields

A Markov random field (MRF) is a probability measure μ on $\mathcal{A}^\mathcal{V}_g$ such that for all finite $A, B \subset \mathcal{V}_g$, $\partial A \subset B \subset A^c$.

- Elements of A
- Elements of B
- Elements of the boundary of A
A Markov random field (MRF) is a probability measure μ on $A^\mathcal{V}_g$ such that for all finite $A, B \subset \mathcal{V}_g$, $\partial A \subset B \subset A^c$ and $a \in A^A$, $b \in A^B$ satisfying $\mu([b]_B) > 0$

$$\mu([a]_A \bigg| [b]_B) = \mu([a]_A \bigg| [b]_{\partial A}).$$

- Elements of A
- Elements of B
- Elements of the boundary of A
Markov Random Fields

A Markov random field (MRF) is a probability measure μ on $\mathcal{A}^\mathcal{V}_G$ such that for all finite $A, B \subset \mathcal{V}_G$, $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A$, $b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([a]_A \mid [b]_B) = \mu([a]_A \mid [b]_{\partial A}).$$

- Elements of A
- Elements of B
- Elements of the boundary of A

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathcal{V}_G$ finite and $b \in \mathcal{A}^{\partial A}$ is called the specification for the measure μ. It might not have any finite description.
Gibbs States

A nearest neighbour (n.n.) interaction on X.

If $G = \mathbb{Z}^d$ the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description: all we need is the interaction V.

Gibbs States

A nearest neighbour (n.n.) interaction on X is a function

$$V : \{ [a]_A \mid A \text{ is an edge or vertex in } \mathcal{G} \} \rightarrow \mathbb{R}.$$
Gibbs States

A nearest neighbour (n.n.) interaction on X is a function

$$V : \{[a]_A \mid A \text{ is an edge or vertex in } G\} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and finite set $A \subset V_G$
Gibbs States

A nearest neighbour (n.n.) interaction on X is a function

$$V : \{[a]_A \mid A \text{ is an edge or vertex in } \mathcal{G}\} \rightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in \text{supp}(\mu)$ and finite set $A \subset \mathcal{V}_G$

$$\mu(\{x\}_A \mid [x]_{\partial A}) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|\partial A}}$$

where $Z_{A,x|\partial A}$ is the uniquely determined normalising factor dependent upon A and $x|\partial A$.
Gibbs States

A nearest neighbour (n.n.) interaction on X is a function

$$V : \{ [a]_A \mid A \text{ is an edge or vertex in } \mathcal{G} \} \rightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in \text{supp}(\mu)$ and finite set $A \subset \mathcal{V}_G$

$$\mu([x]_A \mid [x]_{\partial A}) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor dependent upon A and $x|_{\partial A}$.

If $\mathcal{G} = \mathbb{Z}^d$ the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description:
Gibbs States

A nearest neighbour (n.n.) interaction on X is a function

$$V : \{ [a]_A \mid A \text{ is an edge or vertex in } G \} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in \text{supp}(\mu)$ and finite set $A \subset V_G$

$$\mu([x]_A \mid [x]_{\partial A}) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|\partial A}},$$

where $Z_{A,x|\partial A}$ is the uniquely determined normalising factor dependent upon A and $x|\partial A$.

If $G = \mathbb{Z}^d$ the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description: all we need is
Gibbs States

A nearest neighbour (n.n.) interaction on \(X \) is a function

\[
V : \{ [a]_A \mid A \text{ is an edge or vertex in } G \} \rightarrow \mathbb{R}.
\]

A Gibbs state with a n.n. interaction \(V \) is a Markov random field \(\mu \) such that for all \(x \in \text{supp}(\mu) \) and finite set \(A \subset \mathcal{V}_G \)

\[
\mu([x]_A \mid [x]|_{\partial A}) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}
\]

where \(Z_{A,x|_{\partial A}} \) is the uniquely determined normalising factor dependent upon \(A \) and \(x|_{\partial A} \).

If \(G = \mathbb{Z}^d \) the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description: all we need is the interaction \(V \).
Gibbs States

Example: If a shift-invariant n.n. interaction on the hard square model is given by

![Graph H](image)

![Interaction V](image)
Gibbs States

Example: If a shift-invariant n.n. interaction on the hard square model is given by

\[
\begin{align*}
&\text{Graph } H \\
&\text{Interaction } V
\end{align*}
\]

that is,

\[
V([00]_0,\vec{e}_i) = V([10]_0,\vec{e}_i) = V([01]_0,\vec{e}_i) = 0,
\]

\[
V([0]_0) = 0 \text{ and } V([1]_0) = 1
\]

then
Gibbs States

Example: If a shift-invariant n.n. interaction on the hard square model is given by

![Graph H and Interaction V](image)

that is,

\[V([00]_{0,\vec{e}_i}) = V([10]_{0,\vec{e}_i}) = V([01]_{0,\vec{e}_i}) = 0, \]
\[V([0]_{\vec{0}}) = 0 \text{ and } V([1]_{\vec{0}}) = 1 \]

then

\[\mu([x]_A \mid [x]_{\partial A}) = \frac{\prod_{C \subseteq A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}} = \frac{e^{\text{number of 1's in } x|_{A\cup\partial A}}}{Z_{A,x|_{\partial A}}}. \]
Question: Under what conditions on the support is every MRF a Gibbs state for some n.n. interaction?
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

The support has a safe symbol: Hammersley and Clifford ('71)

Algebraic conditions on the support and G is a finite graph: Sturmfels, Gieger and Meek ('06)

Conditions on the graph G: Lauritzen ('96)

For shift-invariant measures and $G = \mathbb{Z}$ under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)

For shift-invariant measures and $G = \mathbb{Z}$: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

New Results:
The support is the 3-coloured chessboard model. A generalisation of the Hammersley-Clifford theorem when G is bipartite.
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford (’71)
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford (’71)
- Algebraic conditions on the support and G is a finite graph: Sturmfels, Gieger and Meek (’06)
- Conditions on the graph G: Lauritzen (’96)
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford (’71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek (’06)
- Conditions on the graph \mathcal{G}: Lauritzen (’96)
- For shift-invariant measures and $\mathcal{G} = \mathbb{Z}$ under some mixing conditions on the support (but infinite set of symbols): Georgii (’88)
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G}: Lauritzen ('96)
- For shift-invariant measures and $\mathcal{G} = \mathbb{Z}$ under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and $\mathcal{G} = \mathbb{Z}$: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford (’71)
- Algebraic conditions on the support and G is a finite graph: Sturmfels, Gieger and Meek (’06)
- Conditions on the graph G: Lauritzen (’96)
- For shift-invariant measures and $G = \mathbb{Z}$ under some mixing conditions on the support (but infinite set of symbols): Georgii (’88)
- For shift-invariant measures and $G = \mathbb{Z}$: Chandgotia, Han, Marcus, Meyerovitch and Pavlov (’11)

New Results:
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and G is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph G: Lauritzen ('96)
- For shift-invariant measures and $G = \mathbb{Z}$ under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and $G = \mathbb{Z}$: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

New Results:

- The support is the 3-coloured chessboard model.
Positive Results

Conditions on the support such that every MRF is Gibbs for some n.n. interaction

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and G is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph G: Lauritzen ('96)
- For shift-invariant measures and $G = \mathbb{Z}$ under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and $G = \mathbb{Z}$: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

New Results:

- The support is the 3-coloured chessboard model.
- A generalisation of the Hammersley-Clifford theorem when G is bipartite.
Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:

When G is a finite graph: Moussouris (’74)

When $G = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin (’68)

When the alphabet is countable: Georgii (’88)

New Results:

For $G = \mathbb{Z}^2$ we constructed a family of shift-invariant MRFs
which are not Gibbs for any shift-invariant finite-range interaction (not just nearest neighbour).
Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:
Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:

- When \mathcal{G} is a finite graph: Moussouris ('74)
- When $\mathcal{G} = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)
- When the alphabet is countable: Georgii ('88)

New Results:

For $\mathcal{G} = \mathbb{Z}^2$ we constructed a family of shift-invariant MRFs which are not Gibbs for any shift-invariant finite-range interaction (not just nearest neighbour).
Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:

- When \mathcal{G} is a finite graph: Moussouris ('74)
- When $\mathcal{G} = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)
Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:

- When \mathcal{G} is a finite graph: Moussouris ('74)
- When $\mathcal{G} = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)
- When the alphabet is countable: Georgii ('88)
Counterexamples

MRFs which need not be Gibbs for any n.n. interaction:

- When G is a finite graph: Moussouris ('74)
- When $G = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)
- When the alphabet is countable: Georgii ('88)

New Results:

- For $G = \mathbb{Z}^2$ we constructed a family of shift-invariant MRFs which are not Gibbs for any shift-invariant finite-range interaction (not just nearest neighbour).
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}.

\[
\begin{array}{c}
\text{w} \\
\text{u} \quad \text{t} \\
\text{v}
\end{array}
\]
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the *neighbourhood* of v in \mathcal{H}, that is,

$$N(v) = \{ s \in \mathcal{H} \mid s \sim v \}.$$
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the *neighbourhood* of v in \mathcal{H}, that is,

$$N(v) = \{ s \in \mathcal{H} \mid s \sim v \}.$$

\mathcal{H} can be folded to a graph $\mathcal{H} \setminus \{ v \}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$.

![Graph Diagram](image-url)
Dismantlable Graphs

Consider an undirected finite graph H. $N(v)$ denotes the *neighbourhood* of v in H, that is,

$$N(v) = \{ s \in H \mid s \sim v \}.$$

H can be folded to a graph $H \setminus \{v\}$ if there exists a vertex $w \in H$ such that $N(v) \subset N(w)$. H is **dismantlable** if there is a sequence of iterative folds $H = H_1, H_2, \ldots, H_n$ such that H_n is a single vertex (with or without a loop).
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the
neighbourhood of v in \mathcal{H}, that is,

$$N(v) = \{ s \in \mathcal{H} \mid s \sim v \}.$$

\mathcal{H} can be *folded* to a graph $\mathcal{H} \setminus \{v\}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$. \mathcal{H} is *dismantlable* if there is a sequence of iterative folds $\mathcal{H} = \mathcal{H}_1, \mathcal{H}_2 \ldots, \mathcal{H}_n$ such that \mathcal{H}_n is a single vertex (with or without a loop).
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the
\textit{neighbourhood} of v in \mathcal{H}, that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

\mathcal{H} can be \textit{folded} to a graph $\mathcal{H} \setminus \{v\}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$. \mathcal{H} is \textit{dismantlable} if there is a sequence of iterative folds $\mathcal{H} = \mathcal{H}_1, \mathcal{H}_2 \ldots, \mathcal{H}_n$ such that \mathcal{H}_n is a single vertex (with or without a loop).
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the *neighbourhood* of v in \mathcal{H}, that is,

$$N(v) = \{ s \in \mathcal{H} \mid s \sim v \}.$$

\mathcal{H} can be folded to a graph $\mathcal{H} \setminus \{v\}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$. \mathcal{H} is **dismantlable** if there is a sequence of iterative folds $\mathcal{H} = \mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n$ such that \mathcal{H}_n is a single vertex (with or without a loop).
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the *neighbourhood* of v in \mathcal{H}, that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

\mathcal{H} can be **folded** to a graph $\mathcal{H} \setminus \{v\}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$. \mathcal{H} is **dismantlable** if there is a sequence of iterative folds $\mathcal{H} = \mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n$ such that \mathcal{H}_n is a single vertex (with or without a loop).
Dismantlable Graphs

Consider an undirected finite graph \mathcal{H}. $N(v)$ denotes the *neighbourhood* of v in \mathcal{H}, that is,

$$N(v) = \{ s \in \mathcal{H} \mid s \sim v \}.$$

\mathcal{H} can be *folded* to a graph $\mathcal{H} \setminus \{v\}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$. \mathcal{H} is *dismantlable* if there is a sequence of iterative folds $\mathcal{H} = \mathcal{H}_1, \mathcal{H}_2 \ldots, \mathcal{H}_n$ such that \mathcal{H}_n is a single vertex (with or without a loop).
Dismantlable Graphs

If $\text{Hom}(\mathbb{Z}_d, H)$ has a safe symbol \star, then for all vertices $v \in V_H$, $N(v) \subseteq N(\star) = V_H$ and thus all vertices v can be folded into \star. Then H is dismantlable.

And there are graphs where no folding is possible. Let C_n denote the n-cycle.
Dismantlable Graphs

If $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_H$, $N(v) \subseteq N(\star) = \mathcal{V}_H$ and thus all vertices v can be folded into \star. Then H is dismantlable.

And there are graphs where no folding is possible. Let C_n denote the n-cycle.
Dismantlable Graphs

If $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_\mathcal{H}$, $N(v) \subset N(\star) = \mathcal{V}_\mathcal{H}$ and thus all vertices v can be folded into \star. Then \mathcal{H} is dismantlable.
Dismantlable Graphs

If $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_H$, $\mathcal{N}(v) \subset \mathcal{N}(\star) = \mathcal{V}_H$ and thus all vertices v can be folded into \star. Then \mathcal{H} is dismantlable.

However there are dismantlable graphs \mathcal{H} even if $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ does not have a safe symbol.
Dismantlable Graphs

If $Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in V_{\mathcal{H}}$, $N(v) \subseteq N(\star) = V_{\mathcal{H}}$ and thus all vertices v can be folded into \star. Then \mathcal{H} is dismantlable.

And there are graphs where no folding is possible. Let C_n denote the n-cycle.
New Results

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14)
If H is either C^n for some n or dismantlable then any MRF on $\text{Hom}(\mathbb{Z}^d, H)$ is a Gibbs state for some $n.n.$ interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant $n.n.$ interaction. In fact we prove further and generalise the Hammersley-Clifford theorem when the underlying graph G is bipartite. How can such a theorem be proved?
New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If \mathcal{H} is either

- C_n for some n or

Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.

In fact we prove further and generalise the Hammersley-Clifford theorem when the underlying graph G is bipartite.

How can such a theorem be proved?
New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If \mathcal{H} is either

- C_n for some n or
- dismantlable

How can such a theorem be proved?
New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If \mathcal{H} is either
- C_n for some n or
- dismantlable

then any MRF on $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction.
New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If \mathcal{H} is either
- C_n for some n or
- dismantlable

then any MRF on $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.
New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If \mathcal{H} is either
- C_n for some n or
- dismantlable

then any MRF on $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.

In fact we prove further and generalise the Hammersley-Clifford theorem when the underlying graph \mathcal{G} is bipartite.
New Results

Theorem (Chandgotia and Meyerovitch ’13, Chandgotia ’14)

If \mathcal{H} is either

- C_n for some n or
- dismantlable

then any MRF on $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.

In fact we prove further and generalise the Hammersley-Clifford theorem when the underlying graph \mathcal{G} is bipartite.

How can such a theorem be proved?
Pivot Property

A space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.
Pivot Property

A space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:
- $\text{Hom}(\mathbb{Z}^d, H)$ when H is dismantlable.
- $\text{Hom}(\mathbb{Z}^d, H)$ when H does not have a four-cycle.
- Domino tilings.
Pivot Property

A space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} is dismantlable.
Pivot Property

A space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} is dismantlable.
- $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} does not have a four-cycle.
Pivot Property

A space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} is dismantlable.
- $\text{Hom}(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} does not have a four-cycle.
- Domino tilings.
The 3-coloured Chessboard
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 2 & 0 & 1 & 2 \\
2 & 0 & 1 & 0 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
2 & 0 & 1 & 0 & 1 & 2 \\
0 & 2 & 0 & 1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 2 & 1 \\
2 & 0 & 1 & 2 & 1 & 2 \\
0 & 2 & 0 & 1 & 0 & 1 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 2 \\
2 & 0 & 1 & 0 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

$$
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 1 & 0 & 1 & 2 \\
2 & 0 & 1 & 0 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
$$
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

```
1 0 2 0 1 0 1
0 2 0 1 2 1 0
1 0 1 2 1 0 1
0 1 2 1 2 1 2
2 0 1 1 2 0
0 2 0 1 0 1 2
```
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 1 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 & 2 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 & 1 \\
0 & 1 & 2 & 1 & 2 & 1 & 2 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 & 0 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.

The 3-coloured chessboard has the pivot property.
Suppose μ is a Markov random field whose support has the pivot property.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$. Therefore the entire specification is determined by finitely many parameters viz.

$\mu(\{x\}_{0} \cup \partial 0) \mu(\{y\}_{0} \cup \partial 0)$ for configurations x, y which differ only at 0, the origin. Thus the space of specifications on $\text{supp}(\mu)$ can be parametrised by finitely many parameters.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$
\frac{\mu([x]_F | [x]_{\partial F})}{\mu([y]_F | [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F | [x^i]_{\partial F})}{\mu([x^{i+1}]_F | [x^i]_{\partial F})}
$$

$$
= \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} | [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} | [x^i]_{\partial m_i})}.
$$
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$
\frac{\mu([x]_F | [x]_{\partial F})}{\mu([y]_F | [x]_{\partial F})} = \frac{\prod_{i=1}^{n-1} \mu([x^i]_F | [x^i]_{\partial F})}{\mu([x^{i+1}]_F | [x^i]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} | [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} | [x^i]_{\partial m_i})}.
$$

Therefore the entire specification is determined by finitely many parameters viz.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F \mid [x]_{\partial F})}{\mu([y]_F \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F \mid [x^i]_{\partial F})}{\mu([x^{i+1}]_F \mid [x^i]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} \mid [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} \mid [x^i]_{\partial m_i})}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0 \cup \partial 0})}{\mu([y]_{0 \cup \partial 0})}$ for configurations x, y which differ only at 0, the origin.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$
\frac{\mu([x]_F \mid [x]_{\partial F})}{\mu([y]_F \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F \mid [x^i]_{\partial F})}{\mu([x^{i+1}]_F \mid [x^i]_{\partial F})}

= \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} \mid [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} \mid [x^i]_{\partial m_i})}.
$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0 \cup \partial 0})}{\mu([y]_{0 \cup \partial 0})}$ for configurations x, y which differ only at 0, the origin.

Thus the space of specifications on $\text{supp}(\mu)$ can be parametrised by finitely many parameters.
Question: Suppose we are given a nearest neighbour shift of finite type with the pivot property. Is there an algorithm to determine the number of parameters which describes the specification?
A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 \\ 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 \\ 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 1 \\ 2 \\ 1 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 0 & 2 \\ 2 \\ 1 \end{bmatrix})}$, and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 2 \\ 0 \\ 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 1 & 0 \\ 0 \\ 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then $v_1 = \exp\left(V(01) + V(10) + V(01) + V(01) - V(21) - V(12) - V(21) - V(12)\right)$, $v_2 = \exp\left(V(12) + V(21) + V(21) + V(12) - V(02) - V(20) - V(02) - V(20)\right)$, and $v_3 = \exp\left(V(02) + V(20) + V(20) + V(02) - V(01) - V(10) - V(01) - V(10)\right)$. μ is Gibbs if and only if $v_1 v_2 v_3 = 1$.
A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 1 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})}$, $v_3 = \frac{\mu(\begin{bmatrix} 2 & 0 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 2 & 2 \end{bmatrix})}$.

If μ is a Gibbs measure with nearest neighbour interaction V then $v_1 = \exp(V(01) + V(10) + V(01) + V(01) - V(21) - V(12) - V(21) - V(12))$, $v_2 = \exp(V(12) + V(21) + V(21) + V(12) - V(02) - V(20) - V(02) - V(20))$, $v_3 = \exp(V(02) + V(20) + V(20) + V(02) - V(01) - V(10) - V(01) - V(10))$. μ is Gibbs if and only if $v_1 v_2 v_3 = 1$.
A specification supported on the 3-coloured chessboard is determined the quantities

\[v_1 = \mu \left(\begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \end{array} \right), \quad v_2 = \mu \left(\begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \end{array} \right), \quad v_3 = \mu \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right) \].

\(\mu \) is Gibbs if and only if

\[v_1 v_2 v_3 = 1. \]
A specification supported on the 3-coloured chessboard is
determined the quantities \(v_1 = \frac{\mu\left(\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \right)}{\mu\left(\begin{bmatrix} 1 & 1 \end{bmatrix} \right)} \), \(v_2 = \frac{\mu\left(\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \right)}{\mu\left(\begin{bmatrix} 1 & 0 \end{bmatrix} \right)} \) and
\(v_3 = \frac{\mu\left(\begin{bmatrix} 0 & 2 & 0 \end{bmatrix} \right)}{\mu\left(\begin{bmatrix} 0 & 1 \end{bmatrix} \right)} \).

If \(\mu \) is a Gibbs measure with nearest neighbour interaction \(V \) then
A specification supported on the 3-coloured chessboard is determined the quantities \(v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})} \), \(v_2 = \frac{\mu(\begin{bmatrix} 2 & 1 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 0 & 2 \end{bmatrix})} \) and \(v_3 = \frac{\mu(\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 \end{bmatrix})} \). If \(\mu \) is a Gibbs measure with nearest neighbour interaction \(V \) then

\[
\begin{align*}
v_1 &= \exp(V(01) + V(10) + V(0_1) + V(0_1) \\
&\quad - V(21) - V(12) - V(2_1) - V(1_2)), \\
v_2 &= \exp(V(12) + V(21) + V(2_1) + V(1_2) \\
&\quad - V(02) - V(20) - V(2_0) - V(2_0)), \\
v_3 &= \exp(V(02) + V(20) + V(2_0) + V(0_2) \\
&\quad - V(01) - V(10) - V(0_1) - V(1_0)).
\end{align*}
\]

\(\mu \) is Gibbs if and only if \(v_1 v_2 v_3 = 1 \).
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1 v_2 v_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $\nu_1 \nu_2 \nu_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1 v_2 v_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold?
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $\nu_1\nu_2\nu_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.
Square Island Shift

Inspired by the checkerboard island shift by Quas and Şahin we constructed
Square Island Shift

Inspired by the checkerboard island shift by Quas and Şahin we constructed the square island shift; it is a space of configurations X on \mathbb{Z}^2 which look like
Square Island Shift

Inspired by the checkerboard island shift by Quas and Şahin we constructed the square island shift; it is a space of configurations X on \mathbb{Z}^2 which look like

There are two kinds of squares: ones with red dots and ones without red dots which float in a sea of blanks.
New Results

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots.

It does not have the generalised pivot property

Theorem (Chandgotia and Meyerovitch '13)

There exists a shift-invariant MRF supported on the square island shift which is not Gibbs for any shift-invariant finite-range interaction.

Is there a more natural example?
New Results

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift,
New Results

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots.
New Results

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots. It does not have the generalised pivot property.
New Results

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots. It does not have the generalised pivot property.

Theorem (Chandgotia and Meyerovitch ‘13)

There exists a shift-invariant MRF supported on the square island shift which is not Gibbs for any shift-invariant finite-range interaction.
New Results

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots. It does not have the generalised pivot property.

Theorem (Chandgotia and Meyerovitch ‘13)

There exists a shift-invariant MRF supported on the square island shift which is not Gibbs for any shift-invariant finite-range interaction.

Is there a more natural example?
Theorem (Tim Austin ‘15)

There is a graph \mathcal{H} for which $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.
Theorem (Tim Austin ‘15)

There is a graph \mathcal{H} for which $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

Question: Is there a shift-invariant Markov random field which is supported on $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ which is not Gibbs for some shift-invariant finite range interaction?
Theorem (Tim Austin ‘15)

There is a graph \mathcal{H} for which $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

Question: Is there a shift-invariant Markov random field which is supported on $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ which is not Gibbs for some shift-invariant finite range interaction?

Question: Can you classify graphs \mathcal{H} for which $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property?
Theorem (Tim Austin ‘15)
There is a graph \mathcal{H} for which $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

Question: Is there a shift-invariant Markov random field which is supported on $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ which is not Gibbs for some shift-invariant finite range interaction?

Question: Can you classify graphs \mathcal{H} for which $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property?

Question: If $\text{Hom}(\mathbb{Z}^2, \mathcal{H})$ has the generalised pivot property, can you determine the minimum number of parameters required to determine the specification of a Markov random field?
Thank You!