Embedding computations in tilings
(a perspective of the course)

Andrei Romashchenko

30 May 2016
What is a tile?
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot \}$

Wang Tile: a unit square with colored sides.
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides. i.e., an element of C^4, e.g., □
What is a tile?

In this mini-course:

Color: an element of a finite set \(C = \{ \cdot, \cdot, \cdot, \cdot, \cdot, \cdot \} \)

Wang Tile: a unit square with colored sides.

i.e, an element of \(C^4 \), e.g.,

Tile set: a set \(\tau \subset C^4 \)
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides.

i.e, an element of C^4, e.g., 🟢

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $f: \mathbb{Z}^2 \rightarrow \tau$

that respects the matching rules
A shift of finite type (SFT):

- A finite set of letters \(\tau \)
- A finite set of forbidden (finite) patterns \(F \)
- SFT: the set of all configurations \(f: \mathbb{Z}^2 \to \tau \) that does not contain forbidden patterns

Remark: for every set of Wang tiles \(\tau \) the set of all \(\tau \)-tilings is an SFT.
A shift of finite type (SFT):

- a finite set of letters τ

Remark: for every set of Wang tiles τ the set of all τ-tilings is an SFT.
A shift of finite type (SFT):

- a finite set of letters τ
- a finite set of forbidden (finite) patterns \mathcal{F}
- SFT: the set of all configurations $f : \mathbb{Z}^2 \rightarrow \tau$ that does not contain forbidden patterns
A shift of finite type (SFT):

- a finite set of letters \(\tau \)
- a finite set of forbidden (finite) patterns \(\mathcal{F} \)
- SFT: the set of all configurations \(f : \mathbb{Z}^2 \to \tau \) that does not contain forbidden patterns

Remark: for every set of Wang tiles \(\tau \) the set of all \(\tau \)-tilings is an SFT
τ-tiling:
a mapping $f: \mathbb{Z}^2 \to \tau$ that respects the local rules.
τ-tiling:
a mapping \(f : \mathbb{Z}^2 \rightarrow \tau \) that respects the local rules.

\(T \in \mathbb{Z}^2 \) is a **period** if \(f(x + T) = f(x) \) for all \(x \).
super-classic facts:

▶ SFT \leadsto tilings

▶ if you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)

▶ if there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2

▶ there exist tile sets τ s.t. all τ-tilings are aperiodic

▶ there exists a tile set τ s.t. all τ-tilings are non-computable

▶ given a tile set τ we cannot algorithmically decide whether there exists a τ-tiling of \mathbb{Z}^2
super-classic facts:

- SFT \sim tilings
super-classic facts:

- SFT \sim \text{tilings}
- if you can tile arbitrarily large square, than you can tile the infinite plane \text{(compacteness)}
super-classic facts:

- SFT \sim tilings
- If you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)
- If there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2
super-classic facts:

- SFT \sim tilings
- if you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)
- if there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2
- there exist tile sets τ s.t. all τ-tilings are aperiodic
super-classic facts:

- SFT \sim tilings
- if you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)
- if there exists a τ-tiling with one period T, then there exists another tiling with two non-collinear periods T_1, T_2
- there exist tile sets τ s.t. all τ-tilings are aperiodic
- there exists a tile set τ s.t. all τ-tilings are non-computable
super-classic facts:

- SFT \sim tilings
- if you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)
- if there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2
- there exist tile sets τ s.t. all τ-tilings are aperiodic
- there exists a tile set τ s.t. all τ-tilings are non-computable
- given a tile set τ we cannot algorithmically decide whether there exists a τ-tiling of \mathbb{Z}^2
super-classic facts:

- SFT \sim tilings
- if you can tile arbitrarily large square, than you can tile the infinite plane (compactness)
- if there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2
- there exist tile sets τ s.t. all τ-tilings are aperiodic
- there exists a tile set τ s.t. all τ-tilings are non-computable
- given a tile set τ we cannot algorithmically decide whether there exists a τ-tiling of \mathbb{Z}^2

other super-classic facts:
super-classic facts:

- SFT \sim tilings
- if you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)
- if there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2
- there exist tile sets τ s.t. all τ-tilings are aperiodic
- there exists a tile set τ s.t. all τ-tilings are non-computable
- given a tile set τ we cannot algorithmically decide whether there exists a τ-tiling of \mathbb{Z}^2

other super-classic facts:

- in any reasonable programming language you can write a program π that prints its own text
super-classic facts:

- SFT \sim tilings

- if you can tile arbitrarily large square, than you can tile the infinite plane (compacteness)

- if there exists a \(\tau \)-tiling with one period \(T \), then there exists another tiling with two non collinear periods \(T_1, T_2 \)

- there exist tile sets \(\tau \) s.t. all \(\tau \)-tilings are aperiodic

- there exists a tile set \(\tau \) s.t. all \(\tau \)-tilings are non-computable

- given a tile set \(\tau \) we cannot algorithmically decide whether there exists a \(\tau \)-tiling of \(\mathbb{Z}^2 \)

other super-classic facts:

- in any reasonable programming language you can write a program \(\pi \) that prints its own text

- in any reasonable programming language you may assume that your program has an access to its own text
super-classic facts:

▶ SFT \sim tilings

▶ if you can tile arbitrarily large square, than you can tile the infinite plane (compactness)

▶ if there exists a τ-tiling with one period T, then there exists another tiling with two non collinear periods T_1, T_2

▶ there exist tile sets τ s.t. all τ-tilings are aperiodic

▶ there exists a tile set τ s.t. all τ-tilings are non-computable

▶ given a tile set τ we cannot algorithmically decide whether there exists a τ-tiling of \mathbb{Z}^2

other super-classic facts:

▶ in any reasonable programming language you can write a program π that prints its own text

▶ in any reasonable programming language you may assume that your program has an access to its own text

▶ any effective (polynomial time) real-life algorithm can be performed by a Turing machine in polynomial time
This mini-course:

Two techniques of embedding a computation in a tiling:
- From self-referential programs to self-similar tilings (goes back to J. von Neumann)
- From arithmetic in Sturmian numeration system to tilings (J. Kari)

Very standard application:
- A construction of an aperiodic tile set

Less standard application:
- Aperiodicity + quasiperiodicity (and even minimality)
This mini-course:

Two techniques
This mini-course:

Two techniques of embedding a computation in a tiling

- from self-referential programs to self-similar tilings
This mini-course:

Two techniques of *embedding a computation in a tiling*

- from *self-referential programs* to *self-similar* tilings
 [goes back to J. von Neumann]
This mini-course:

Two techniques of embedding a computation in a tiling

- from self-referential programs to self-similar tilings
 [goes back to J. von Neumann]
- from arithmetic in Sturmian numeration system to tilings
This mini-course:

Two techniques of *embedding a computation in a tiling*

- from **self-referential programs** to **self-similar** tilings

 [goes back to J. von Neumann]

- from arithmetic in **Sturmian numeration system** to tilings

 [J. Kari]
This mini-course:

Two techniques of embedding a computation in a tiling

- from self-referential programs to self-similar tilings
 [goes back to J. von Neumann]
- from arithmetic in Sturmian numeration system to tilings
 [J. Kari]

Very standard application:

- a construction of an aperiodic tile set

Less standard application:

- aperiodicity + quasiperiodicity
This mini-course:

Two techniques of *embedding a computation in a tiling*

- from *self-referential programs* to *self-similar* tilings
 [goes back to J. von Neumann]
- from arithmetic in *Sturmian numeration system* to tilings
 [J. Kari]

Very standard application:

- a construction of an aperiodic tile set

Less standard application:

- aperiodicity + quasiperiodicity (and even minimality)
Possible topics of this min-course

- Some applications of the self-simulating tilings:
 - The tiling problem is undecidable [Berger 1966]
 - A tile set with only non-computable tilings [Hanf & Myers 1974]
 - A tile set with highly aperiodic tilings [?]
 - Robust (error-correcting) tilings [?]
 - An effective shift is isomorphic to a subaction of a sofic shift [Hochman 2009, Aubrun & Sablik 2013]
 - A minimal effective shift can be simulated by a minimal SFT [?]

- Another remarkable result:
 - Kari’s technique gives non self-similar tilings [T. Monteil]
Possible topics of this min-course

Some applications of the self-simulating tilings:

- the tiling problem is undecidable [Berger 1966]
- a tile set with only non computable tilings [Hanf & Myers 1974]
- a tile set with highly aperiodic tilings [?]
- robust (error-correcting) tilings [?]
- an effective shift is isomorphic to a subaction of a sofic shift [Hochman 2009, Aubrun & Sablik 2013]
- a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:
- Kari's technique gives non self-similar tilings [T. Monteil]
Possible topics of this min-course

Some applications of the self-simulating tilings:

» the tiling problem is undecidable [Berger 1966]
» a tile set with only non computable tilings [Hanf & Myers 1974]
» a tile set with highly aperiodic tilings [?]
» robust (error-correcting) tilings [?]
Possible topics of this min-course

Some applications of the self-simulating tilings:

- the tiling problem is undecidable [Berger 1966]
- a tile set with only non computable tilings [Hanf & Myers 1974]
- a tile set with highly aperiodic tilings [?]
- robust (error-correcting) tilings [?]
- an effective shift is isomorphic to a subaction of a sofic shift [Hochman 2009, Aubrun & Sablik 2013]
- a minimal effective shift can be simulated by a minimal SFT [?]
Possible topics of this min-course

Some applications of the self-simulating tilings:

- the tiling problem is undecidable [Berger 1966]
- a tile set with only non computable tilings [Hanf & Myers 1974]
- a tile set with highly aperiodic tilings [?]
- robust (error-correcting) tilings [?]
- an effective shift is isomorphic to a subaction of a sofic shift [Hochman 2009, Aubrun & Sablik 2013]
- a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

- Kari’s technique gives non self-similar tilings [T. Monteil]
Possible topics of this min-course

Some applications of the self-simulating tilings:

- the tiling problem is undecidable [Berger 1966]
- a tile set with only non computable tilings [Hanf & Myers 1974]
- a tile set with highly aperiodic tilings [?]
- robust (error-correcting) tilings [?]
- an effective shift is isomorphic to a subaction of a sofic shift [Hochman 2009, Aubrun & Sablik 2013]
- a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

- Kari’s technique gives non self-similar tilings [T. Monteil]
Come to the lectures!