Embedding computations in tilings
(Part 1: fixed point tilings)

Andrei Romashchenko

31 May 2016
What is a **tile**?
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides.
What is a tile?

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides.
i.e, an element of C^4, e.g., \[\text{\[]} \]
What is a **tile**?

In **this** mini-course:

Color: an element of a finite set $C = \{ \cdot, \cdot, \cdot, \cdot, \cdot, \cdot \}$

Wang Tile: a unit square with colored sides.

i.e, an element of C^4, e.g., 🟢

Tile set: a set $\tau \subset C^4$
What is a **tile**?

In **this** mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides. i.e, an element of C^4, e.g., 🔴

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $f : \mathbb{Z}^2 \rightarrow \tau$
that respects the matching rules
Tiling: a mapping $f : \mathbb{Z}^2 \to \tau$ such that

$$f(i,j).\text{right} = f(i+1,j).\text{left}, \quad \text{e.g., } \begin{array}{c|c} \cdot & \cdot \\ \hline \cdot & \cdot \end{array} + \begin{array}{c|c} \cdot & \cdot \\ \hline \cdot & \cdot \end{array}$$

$$f(i,j).\text{top} = f(i,j+1).\text{bottom}, \quad \text{e.g., } \begin{array}{c|c} \cdot & \cdot \\ \hline \cdot & \cdot \end{array} + \begin{array}{c|c} \cdot & \cdot \\ \hline \cdot & \cdot \end{array}$$
Tiling: a mapping $f : \mathbb{Z}^2 \rightarrow \tau$ such that

$$f(i, j).\text{right} = f(i + 1, j).\text{left}, \quad \text{e.g.,} \quad \square + \square$$

$$f(i, j).\text{top} = f(i, j + 1).\text{bottom}, \quad \text{e.g.,} \quad \quad +$$

Example. A finite pattern from a valid tiling:
τ-tiling is a mapping $f : \mathbb{Z}^2 \rightarrow \tau$ that respects the local rules.
τ-tiling is a mapping \(f : \mathbb{Z}^2 \rightarrow \tau \) that respects the local rules.

\(T \in \mathbb{Z}^2 \) is a **period** if \(f(x + T) = f(x) \) for all \(x \).
τ-tiling is a mapping \(f : \mathbb{Z}^2 \rightarrow \tau \) that respects the local rules.

\(T \in \mathbb{Z}^2 \) is a **period** if \(f(x + T) = f(x) \) for all \(x \).

Theorem. There exists a tile set \(\tau \) such that
(i) \(\tau \)-tilings exist, and
τ-tiling is a mapping $f : \mathbb{Z}^2 \to \tau$ that respects the local rules.

$T \in \mathbb{Z}^2$ is a **period** if $f(x + T) = f(x)$ for all x.

Theorem. There exists a tile set τ such that

(i) τ-tilings exist, and

(ii) all τ-tilings are aperiodic.
A construction of an aperiodic tile set:
A construction of an aperiodic tile set:

- define **self-similar** tile sets
A construction of an aperiodic tile set:

- define **self-similar** tile sets
- observe that *every* self-similar tile set is aperiodic
A construction of an aperiodic tile set:

- define **self-similar** tile sets
- observe that *every* self-similar tile set is aperiodic
- construct *some* self-similar tile set
an $N \times N$ square made of matching τ-tiles
Fix a tile set \(\tau \) and an integer \(N > 1 \).
Fix a tile set τ and an integer $N > 1$.

Definition 1. A τ-macro-tile: an $N \times N$ square made of matching τ-tiles.
Fix a tile set τ and an integer $N > 1$.

Definition 1. A τ-macro-tile: an $N \times N$ square made of matching τ-tiles.

Definition 2. A tile set ρ is simulated by τ: there exists a family of τ-macro-tiles R such that

- R is isomorphic to ρ, and
- every τ-tiling can be *uniquely* split by an $N \times N$ grid into macro-tiles from R.
Example.

A tile set ρ: Trivial tile set (only one color)
Example.

A tile set ρ: Trivial tile set (only one color)
A tile set τ: A tile set that simulates a trivial tile set ρ
Example.

A tile set \(\rho \): Trivial tile set (only one color)
A tile set \(\tau \): A tile set that simulates a trivial tile set \(\rho \)

\[
\begin{array}{c}
(i, j + 1) \\
(i, j) \\
(i + 1, j) \\
(i, j)
\end{array}
\]
Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.
Self-similar tile set: a tile set that simulates a set of macrotiles *isomorphic* to itself.

Proposition. Self-similar tile set is aperiodic.
Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

Sketch of the proof:
Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

Sketch of the proof:
Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.
Sketch of the proof:
Simulating a given tile set \(\rho \) by macro-tiles.
Simulating a given tile set ρ by macro-tiles.
Representation of the tile set ρ:

\[\begin{aligned}
\text{colors of a tile set } \rho &\Rightarrow k\text{-bits strings} \\
\text{a tile set } \rho &\Rightarrow \text{a predicate } P(x_1, x_2, x_3, x_4) \\
\text{on } 4\text{-tuples of colors} &
\end{aligned} \]
Simulating a given tile set ρ by macro-tiles.

Representation of the tile set ρ:

- colors of a tile set $\rho \implies k$-bits strings
Simulating a given tile set ρ by macro-tiles.
Representation of the tile set ρ:

- colors of a tile set ρ \implies k-bits strings
- a tile set ρ \implies a predicate $P(x_1, x_2, x_3, x_4)$ on 4-tuples of colors
Simulating a given tile set ρ by macro-tiles.

Representation of the tile set ρ:

- Colors of a tile set $\rho \implies k$-bits strings
- A tile set $\rho \implies$ a predicate $P(x_1, x_2, x_3, x_4)$ on 4-tuples of colors
- A TM that accepts only 4-tuples of colors for the ρ-tiles
The scheme of implementation:
A more generic construction:
universal TM + program
A more generic construction:
universal TM + program

A fixed point: simulating tile set = simulated tile set
How to get **aperiodicity + quasiperiodicity**?
How to get aperiodicity + quasiperiodicity?

The problematic part is the computation zone...
Duplicate all 2×2 patterns that may appear in the computation zone!
A slot for a 2×2 patterns from the computation zone:

<table>
<thead>
<tr>
<th></th>
<th>$(i, j + 4)$</th>
<th>$(i + 1, j + 4)$</th>
<th>$(i + 2, j + 4)$</th>
<th>$(i + 3, j + 4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(i, j + 3)$</td>
<td>$(i, j + 3)$</td>
<td>$(i + 1, j + 3)$</td>
<td>$(i + 2, j + 3)$</td>
<td>$(i + 3, j + 3)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s, t + 2)$</td>
<td>$(s + 1, t + 2)$</td>
<td>$(i + 3, j + 3)$</td>
<td>$(i + 3, j + 3)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(s + 2, t + 1)$</td>
<td>$(s + 2, t + 1)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(i + 3, j + 2)$</td>
<td>$(i + 3, j + 2)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(s + 2, t + 1)$</td>
<td>$(s + 2, t + 1)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(i + 3, j + 2)$</td>
<td>$(i + 3, j + 2)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(s + 2, t + 1)$</td>
<td>$(s + 2, t + 1)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(i + 3, j + 1)$</td>
<td>$(i + 3, j + 1)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(i + 3, j + 1)$</td>
<td>$(i + 3, j + 1)$</td>
</tr>
<tr>
<td>(i, j)</td>
<td>$(s + 1, t + 2)$</td>
<td>$(s + 1, t + 1)$</td>
<td>$(i + 3, j + 1)$</td>
<td>$(i + 3, j + 1)$</td>
</tr>
</tbody>
</table>