Embedding computations in tilings (Part 1: fixed point tilings)

Andrei Romashchenko

31 May 2016

What is a tile?

What is a tile?
In this mini-course:
Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot$,

What is a tile?
In this mini-course:
Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot$,
Wang Tile: a unit square with colored sides.

What is a tile?
In this mini-course:
Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot$,
Wang Tile: a unit square with colored sides.
i.e, an element of C^{4}, e.g., \square

What is a tile?
In this mini-course:
Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot$,
Wang Tile: a unit square with colored sides.
i.e, an element of C^{4}, e.g., \square

Tile set: a set $\tau \subset C^{4}$

What is a tile?
In this mini-course:
Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot$,
Wang Tile: a unit square with colored sides.
i.e, an element of C^{4}, e.g., \square

Tile set: a set $\tau \subset C^{4}$
Tiling: a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ that respects the matching rules

Tiling: a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ such that

$$
\begin{aligned}
& f(i, j) \text {.right }=f(i+1, j) \text {.left, } \quad \text { e.g., } \quad \square+\square \\
& f(i, j) \text {.top }=f(i, j+1) \text {.bottom, e.g., } \quad+
\end{aligned}
$$

Tiling: a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ such that

$$
\begin{aligned}
& f(i, j) \text {.right }=f(i+1, j) \text {.left, } \quad \text { e.g., } \square+\square \\
& f(i, j) \text {.top }=f(i, j+1) \text {.bottom, } \quad \text { e.g., }
\end{aligned}
$$

Example. A finite pattern from a valid tiling:

τ-tiling is a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ that respects the local rules.
τ-tiling is a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ that respects the local rules.
$T \in \mathbb{Z}^{2}$ is a period if $f(x+T)=f(x)$ for all x.
τ-tiling is a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ that respects the local rules.
$T \in \mathbb{Z}^{2}$ is a period if $f(x+T)=f(x)$ for all x.
Theorem. There exists a tile set τ such that (i) τ-tilings exist, and
τ-tiling is a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ that respects the local rules.
$T \in \mathbb{Z}^{2}$ is a period if $f(x+T)=f(x)$ for all x.
Theorem. There exists a tile set τ such that
(i) τ-tilings exist, and
(ii) all τ-tilings are aperiodic.

A construction of an aperiodic tile set:

A construction of an aperiodic tile set:

- define self-similar tile sets

A construction of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic

A construction of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

Macro-tile:

an $N \times N$ square made of matching τ-tiles

Fix a tile set τ and an integer $N>1$.

Fix a tile set τ and an integer $N>1$.
Definition 1. A τ-macro-tile: an $N \times N$ square made of matching τ-tiles.

Fix a tile set τ and an integer $N>1$.
Definition 1. A τ-macro-tile: an $N \times N$ square made of matching τ-tiles.

Definition 2. A tile set ρ is simulated by τ : there exists a family of τ-macro-tiles R such that

- R is isomorphic to ρ, and
- every τ-tiling can be uniquely split by an $N \times N$ grid into macro-tiles from R.

Example.

A tile set ρ : Trivial tile set (only one color)

Example.

A tile set ρ : Trivial tile set (only one color)
A tile set τ : A tile set that simulates a trivial tile set ρ

Example.

A tile set ρ : Trivial tile set (only one color)
A tile set τ : A tile set that simulates a trivial tile set ρ

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

 Sketch of the proof:

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

Sketch of the proof:

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

Sketch of the proof:

Simulating a given tile set ρ by macro-tiles.

Simulating a given tile set ρ by macro-tiles.
Representation of the tile set ρ :

Simulating a given tile set ρ by macro-tiles.
Representation of the tile set ρ :

- colors of a tile set $\rho \Longrightarrow \quad$-bits strings

Simulating a given tile set ρ by macro-tiles.
Representation of the tile set ρ :

- colors of a tile set $\rho \quad \Longrightarrow \quad k$-bits strings
- a tile set $\rho \quad \Longrightarrow \quad \begin{gathered}\text { a predicate } \\ \mathcal{P}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\ \text { on 4-tuples of colors }\end{gathered}$

Simulating a given tile set ρ by macro-tiles.
Representation of the tile set ρ :

- colors of a tile set $\rho \quad \Longrightarrow \quad k$-bits strings
- a tile set $\rho \quad \Longrightarrow \quad \begin{gathered}\text { a predicate } \\ \mathcal{P}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\ \text { on 4-tuples of colors }\end{gathered}$
a TM that accepts
only 4 -tuples of colors for the ρ-tiles

The scheme of implementation:

A more generic construction: universal TM + program

A more generic construction: universal TM + program

A fixed point: simulating tile set $=$ simulated tile set

How to get aperiodicity + quasiperiodicity ?

How to get aperiodicity + quasiperiodicity ?

The problematic part is the computation zone...

Duplicate all 2×2 patterns that may appear in the computation zone!

A slot for a 2×2 patterns from the computation zone:

