Embedding computations in tilings (Part 1: fixed point tilings)

Andrei Romashchenko

31 May 2016

イロン イヨン イヨン イヨン 三日

1/18

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides.

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides. i.e, an element of C^4 , e.g.,

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Wang Tile: a unit square with colored sides. i.e, an element of C^4 , e.g.,

Tile set: a set $\tau \subset C^4$

In this mini-course:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

2/18

Wang Tile: a unit square with colored sides. i.e, an element of C^4 , e.g.,

```
Tile set: a set \tau \subset C^4
```

Tiling: a mapping $f: \mathbb{Z}^2 \to \tau$ that respects the matching rules

Tiling: a mapping $f : \mathbb{Z}^2 \to \tau$ such that f(i,j).right = f(i+1,j).left, e.g., +

Example. A finite pattern from a valid tiling:

au-tiling is a mapping $f: \mathbb{Z}^2 \to au$ that respects the local rules.

 $\tau\text{-tiling}$ is a mapping $\ f\colon \mathbb{Z}^2\to \tau \$ that respects the local rules.

 $T \in \mathbb{Z}^2$ is a **period** if f(x + T) = f(x) for all x.

 $\tau\text{-tiling}$ is a mapping $\ f\colon \mathbb{Z}^2\to \tau \$ that respects the local rules.

 $T \in \mathbb{Z}^2$ is a **period** if f(x + T) = f(x) for all x.

Theorem. There exists a tile set τ such that (i) τ -tilings exist, and

au-tiling is a mapping $f: \mathbb{Z}^2 \to au$ that respects the local rules.

 $T \in \mathbb{Z}^2$ is a **period** if f(x + T) = f(x) for all x.

Theorem. There exists a tile set τ such that (i) τ -tilings exist, and (ii) all τ -tilings are aperiodic.

define self-similar tile sets

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

an $N \times N$ square made of matching τ -tiles

Fix a tile set τ and an integer N > 1.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of matching τ -tiles.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of matching τ -tiles.

Definition 2. A tile set ρ is **simulated** by τ : there exists a family of τ -macro-tiles *R* such that

- *R* is *isomorphic* to *ρ*, and
- every *τ*-tiling can be *uniquely* split by an N × N grid into macro-tiles from R.

Example.

A tile set ρ : Trivial tile set (only one color)

Example.

A tile set ρ : Trivial tile set (only one color) A tile set τ : A tile set that simulates a trivial tile set ρ

Example.

A tile set ρ : Trivial tile set (only one color) A tile set τ : A tile set that simulates a trivial tile set ρ

$$(i, j+1)$$

$$(i, j) \underbrace{[}_{(i, j)} (i+1, j)$$

イロト イロト イヨト イヨト 二日

8/18

クへで 9/18

Proposition. Self-similar tile set is aperiodic.

Proposition. Self-similar tile set is aperiodic. Sketch of the proof:

Proposition. Self-similar tile set is aperiodic. Sketch of the proof:

Proposition. Self-similar tile set is aperiodic. Sketch of the proof:

-		

• colors of a tile set
$$\rho \implies k$$
-bits strings

The scheme of implementation:

A more generic construction: universal TM + program

A more generic construction: universal TM + program

A fixed point: simulating tile set = simulated tile set

How to get aperiodicity + quasiperiodicity ?

How to get aperiodicity + quasiperiodicity ?

The problematic part is the computation zone...

Duplicate all 2×2 patterns that *may* appear in the computation zone!

A slot for a 2×2 patterns from the computation zone:

(i, j + 4)	(i + 1, j + 4)	(i + 2, j + 4)	(i + 3, j + 4)
(i, j + 3) $(i + 1, j + 3)$	(i+1, j+3) $(i+2, j+3)$	(i + 2, j + 3) $(i + 3, j + 3)$	(i + 3, j + 3) $(i + 4, j + 3)$
(i, j + 3)	(s, t + 2)	(s + 1, t + 2)	(i + 3, j + 3)
(1, j + 0)	(0,0 + 2)	(0 + 1,1 + 2)	(++ 0, j + 0)
(i, j + 3)	(s, t + 2)	(s + 1, t + 2)	(i + 3, j + 3)
((s, t + 1) $(s + 1, t + 1)$	((
(i, j + 2) $(s, t + 1)$	(s, t+1) $(s+1, t+1)$	(s+1,t+1) $(s+2,t+1)$	(s+2,t+1) $(t+4,j+2)$
(i, j + 2)	(s, t + 1)	(s + 1, t + 1)	(i + 3, j + 2)
(i, j + 2)	(s, t + 1)	(s + 1, t + 1)	(i + 3, j + 2)
	(0,0 1 2)	(0 1 2)2 1 2)	(1 + 0, j + 2)
	(0,0 1 2)	(0.1.5,5.1.5)	(1 + 0, j + 2)
			,
(i, j + 1) (s, t)			(s + 2, t) $(i + 4, j + 1)$
			,
(i, j + 1) (s, t)	(s,t) $(s+1,t)$	(s+1,t) $(s+2,t)$	(s+2,t) $(i+4,j+1)$
(i, j + 1) $(s, t)(i, j + 1)$	(s,t) $(s+1,t)(s,t)$	(s+1,t) $(s+2,t)(s+1,t)$	(s + 2, t) $(i + 4, j + 1)(i + 3, j + 1)$
(i, j + 1) (s, t)	(s,t) $(s+1,t)$	(s+1,t) $(s+2,t)$	(s+2,t) $(i+4,j+1)$
(i, j + 1) $(s, t)(i, j + 1)$	(s,t) $(s+1,t)(s,t)$	(s+1,t) $(s+2,t)(s+1,t)$	(s + 2, t) $(i + 4, j + 1)(i + 3, j + 1)$
(i, j + 1) $(s, t)(i, j + 1)(i, j + 1)$	(s,t) $(s+1,t)(s,t)(s,t)$	(s + 1, t) $(s + 2, t)(s + 1, t)(s + 1, t)$	(s + 2, t) $(i + 4, j + 1)(i + 3, j + 1)(i + 3, j + 1)$
(i, j + 1) $(s, t)(i, j + 1)(i, j + 1)$	(s,t) $(s+1,t)(s,t)$	(s + 1, t) $(s + 2, t)(s + 1, t)(s + 1, t)$	(s + 2, t) $(i + 4, j + 1)(i + 3, j + 1)(i + 3, j + 1)$
(i, j + 1) $(s, t)(i, j + 1)(i, j + 1)$	(s,t) $(s+1,t)(s,t)(s,t)$	(s + 1, t) $(s + 2, t)(s + 1, t)(s + 1, t)$	(s + 2, t) $(i + 4, j + 1)(i + 3, j + 1)(i + 3, j + 1)$
(i, j + 1) $(s, t)(i, j + 1)(i, j + 1)$	(s,t) $(s+1,t)(s,t)(s,t)$	(s + 1, t) $(s + 2, t)(s + 1, t)(s + 1, t)$	(s + 2, t) $(i + 4, j + 1)(i + 3, j + 1)(i + 3, j + 1)$