Embedding computations in tilings (Part 2)

Andrei Romashchenko
the 2nd June 2016

Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot \cdot\}$
Wang Tile: a unit square with colored sides.

Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot$,
Wang Tile: a unit square with colored sides.
i.e, an element of C^{4}, e.g., \square

Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot \cdot\}$
Wang Tile: a unit square with colored sides.
i.e, an element of C^{4}, e.g., \square

Set of Wang tiles: a set $\tau \subset C^{4}$

Color: an element of a finite set $C=\{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot \cdot\}$
Wang Tile: a unit square with colored sides.
i.e, an element of C^{4}, e.g., \square

Set of Wang tiles: a set $\tau \subset C^{4}$
Tiling: a mapping $f: \mathbb{Z}^{2} \rightarrow \tau$ that respects the matching rules

Theorem. There exists a tile set τ such that (i) τ-tilings exist, and

Theorem. There exists a tile set τ such that
(i) τ-tilings exist, and
(ii) all τ-tilings are aperiodic.

Existence of an aperiodic tile set:

Existence of an aperiodic tile set:

- define self-similar tile sets

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

We know simple explicit example of self-similar tile sets

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

We know simple explicit example of self-similar tile sets
even in Math. Intelligencer, Durand-Levin-Shen [2004]

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

We know simple explicit example of self-similar tile sets
even in Math. Intelligencer, Durand-Levin-Shen [2004] (for kids!)

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

We know simple explicit example of self-similar tile sets even in Math. Intelligencer, Durand-Levin-Shen [2004] (for kids!) last lecture: the fixed-point construction from Durand-R.-Shen

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

We know simple explicit example of self-similar tile sets even in Math. Intelligencer, Durand-Levin-Shen [2004] (for kids!) last lecture: the fixed-point construction from Durand-R.-Shen Funny, but...

Existence of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

We know simple explicit example of self-similar tile sets even in Math. Intelligencer, Durand-Levin-Shen [2004] (for kids!) last lecture: the fixed-point construction from Durand-R.-Shen Funny, but... WHY???

A tile set that simulates itself:

A tile set that simulates itself:

Parameters:

- $N=$ zoom factor
- $k=\#$ [bits in a macro-color]
- $m=$ [size of the computational zone]

A tile set that simulates itself:

Parameters:

- $N=$ zoom factor
- $k=\#[$ bits in a macro-color] $:=2 \log N+O(1)$
- $m=[$ size of the computational zone] $:=\operatorname{poly}(\log N)$

A tile set that simulates itself:

Parameters:

- $N=$ zoom factor
- $k(N)=\#[$ bits in a macro-color $]:=2 \log N+O(1)$
- $m(N)=[$ size of the computational zone]:= poly $(\log N)$

A tile set τ_{N} that simulates itself:

Parameters:

- $N=$ zoom factor (works for all large enough N)
- $k=\#[$ bits in a macro-color] $:=2 \log N+O(1)$
- $m=[$ size of the computational zone $]:=\operatorname{poly}(\log N)$

A tile set τ_{N} that simulates itself with variable zoom :

- level 1 (macro-tiles): zoom $=N$,
- level 2 (macro-maro-tiles): zoom $=N+1$,
- level 3 (macro-maro-macro-tiles): zoom=N+2,
[Turing machine π] \mapsto tile set $\tau(\pi)$

Useful computation $=$ simulating machine π on available space and time
[Turing machine π] \mapsto tile set $\tau(\pi)$

Useful computation $=$ simulating machine π on available space and time τ-tiling exists $\Longleftrightarrow \pi$ never stops
[Turing machine π] \mapsto tile set $\tau(\pi)$
τ-tiling exists $\Longleftrightarrow \pi$ never stops

Theorem [Berger 66]. The tiling problem is undecidable
[Turing machine π] \mapsto tile set $\tau(\pi)$
τ-tiling exists $\Longleftrightarrow \pi$ never stops

Theorem [Berger 66]. The tiling problem is undecidable (given a tile set we cannot decide algorithmically whether it can tile the plane).
a sequence embedded in a tiling:

$\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$
a sequence embedded in a tiling:

$\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$
N-macro-colors include the prefix $\omega_{[0: \log N]}$
三 \ddagger @く

Definition. $\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$ is a separator if

- $\omega_{n}=0$ for every n s.t. the n-th Turing machine $(n)=0$,
- $\omega_{n}=1$ for every n s.t. the n-th Turing machine $(n)=1$.

Definition. $\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$ is a separator if

- $\omega_{n}=0$ for every n s.t. the n-th Turing machine $(n)=0$,
- $\omega_{n}=1$ for every n s.t. the n-th Turing machine $(n)=1$.

Lemma. Every separator is non computable.

Definition. $\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$ is a separator if

- $\omega_{n}=0$ for every n s.t. the n-th Turing machine $(n)=0$,
- $\omega_{n}=1$ for every n s.t. the n-th Turing machine $(n)=1$.

Lemma. Every separator is non computable.
This is a very standard fact: a pair of r.e. non separable sets.

Definition. $\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$ is a separator if

- $\omega_{n}=0$ for every n s.t. the n-th Turing machine $(n)=0$,
- $\omega_{n}=1$ for every n s.t. the n-th Turing machine $(n)=1$.

Lemma. Every separator is non computable.
This is a very standard fact: a pair of r.e. non separable sets.
Theorem [Hanf, Myers 74]. There exists a tile set τ such that

- τ-tilings of the plane exist,
- every τ-tiling is non computable.

Definition. $\omega=\omega_{0} \omega_{1} \ldots \omega_{n} \ldots$ is a separator if

- $\omega_{n}=0$ for every n s.t. the n-th Turing machine $(n)=0$,
- $\omega_{n}=1$ for every n s.t. the n-th Turing machine $(n)=1$.

Lemma. Every separator is non computable.
This is a very standard fact: a pair of r.e. non separable sets.
Theorem [Hanf, Myers 74]. There exists a tile set τ such that

- τ-tilings of the plane exist,
- every τ-tiling is non computable.

Proof:

- embed an ω in our tiling
- useful computation: simulate in parallel n-th TM(n) and check that the embedded ω is a separator
- every (infinite) tiling must include an incomputable ω

