Embedding computations in tilings (Part 3)

Andrei Romashchenko

June 3, 2016

Theorem. There exists a tile τ such that

- τ-tilings exits, and
- all τ-tilings are aperiodic

Theorem. There exists a tile τ such that

- τ-tilings exits, and
- all τ-tilings are aperiodic

Many (most)proofs does not look robust:

Theorem. There exists a tile τ such that

- τ-tilings exits, and
- all τ-tilings are aperiodic

Many (most)proofs does not look robust:

- Tilings are aperiodic, but close to periodic;

Theorem. There exists a tile τ such that

- τ-tilings exits, and
- all τ-tilings are aperiodic

Many (most)proofs does not look robust:

- Tilings are aperiodic, but close to periodic;
- There are periodic configurations that are almost tilings (with a sparse set of tiling errors)

We want the tilings to be very aperiodic.

We want the tilings to be very aperiodic. What could it mean?

We want the tilings to be very aperiodic.
What could it mean?

- every shift changes a significant fraction of positions

We want the tilings to be very aperiodic.
What could it mean?

- every shift changes a significant fraction of positions
- being far from any periodic

We want the tilings to be very aperiodic.
What could it mean?

- every shift changes a significant fraction of positions
- being far from any periodic

Such configurations do exist. Moreover, they can be enforced by tiling rules.

Robustness:

sparse errors (or holes) does not matter

Robustness:
sparse errors (or holes) does not matter
What is sparse ?

Robustness:

sparse errors (or holes) does not matter
What is sparse ?
B_{ε} : Bernoulli distribution where each cell belongs to a random set with probability ε and different cells are independent

Robustness:

sparse errors (or holes) does not matter
What is sparse ?
B_{ε} : Bernoulli distribution where each cell belongs to a random set with probability ε and different cells are independent

The notion of a sparse set is reasonable if for small enough ε a B_{ε}-random set is sparse with prob. 1

Robust tile set:
sparse tiling errors (or holes) does not matter

Robust tile set:
sparse tiling errors (or holes) does not matter What could does not matter mean?

Robust tile set:
sparse tiling errors (or holes) does not matter
What could does not matter mean?
Sparse errors do not change the property of strong aperiodicity.

Robust tile set:
sparse tiling errors (or holes) does not matter
What could does not matter mean?
Sparse errors do not change the property of strong aperiodicity.

Theorem [Durand-R.-Shen] There exists a tile set τ such that for all small enough ε the following is true for B_{ε}-almost all sets H :
Every tiling of $\mathbb{Z}^{2} \backslash H$ is very aperiodic (every non-zero translation changes $>10 \%$ of tiles).

A. Making tiling robust

A. Making tiling robust

1. introduce some redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2×2 holes)

A. Making tiling robust

1. introduce some redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2×2 holes)

2. a small miracle: self-similarity \Rightarrow we can correct an error of any size!

A. Making tiling robust

1. introduce some redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2×2 holes)

2. a small miracle: self-similarity \Rightarrow we can correct an error of any size!
3. a real miracle: we can correct a random set of miracles (with prob 1)

A B_{ε}-random set consists of isolated "islands" of different levels

Isolated 0-level islands:

Clean up 0-level islands:
\therefore.

Isolated 1-level islands:

Clean up 1-level islands:

2-level island:

With probability 1 the cleaning procedure converges. Moreover, with probability 1 only the fraction $O(\varepsilon)$ of points is involved in the correcting procedure.
B. Making a tiling strongly aperiodic
B. Making a tiling strongly aperiodic

Idea: embed some substitution.
B. Making a tiling strongly aperiodic

Idea: embed some substitution.
E.g., implement the Thue-Morse substitution rule:

$$
0 \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad 1 \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

B. Making a tiling strongly aperiodic

Idea: embed some substitution.
E.g., implement the Thue-Morse substitution rule:

$$
\begin{aligned}
& 0 \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad 1 \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& 0 \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \rightarrow \cdots
\end{aligned}
$$

B. Making a tiling strongly aperiodic

Idea: embed some substitution.
E.g., implement the Thue-Morse substitution rule:

$$
\begin{gathered}
0 \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), 1 \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
0 \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \rightarrow \cdots
\end{gathered}
$$

Lemma. The limit configuration of the
Thue-Morse substitution rule is strongly aperiodic.

Combining all things together:

Combining all things together:

- self-similar tiling

Combining all things together:

- self-similar tiling
- local robustness: patching isolated holes

Combining all things together:

- self-similar tiling
- local robustness: patching isolated holes
- split a random set of holes in isolated islands

Combining all things together:

- self-similar tiling
- local robustness: patching isolated holes
- split a random set of holes in isolated islands
- embed a very periodic substitution rule (e.g., Thue-Morse)

Combining all things together:

- self-similar tiling
- local robustness: patching isolated holes
- split a random set of holes in isolated islands
- embed a very periodic substitution rule (e.g., Thue-Morse)

And it works!

Once again:
Theorem. There exists a tile set τ such that for all small enough ε the following is true for B_{ε}-almost all sets H :

Every tiling of $\mathbb{Z}^{2} \backslash H$ is very aperiodic (every non-zero translation changes $>10 \%$ of tiles).

Once again:
Theorem. There exists a tile set τ such that for all small enough ε the following is true for B_{ε}-almost all sets H :

Every tiling of $\mathbb{Z}^{2} \backslash H$ is very aperiodic (every non-zero translation changes $>10 \%$ of tiles).

Question: How to achieve the "robustness" property without fixed-point?

