Embedding computations in tilings (Part 3)

Andrei Romashchenko

June 3, 2016

◆□→ ◆圖→ ◆注→ ◆注→ □注

1/16

- τ -tilings exits, and
- all τ -tilings are aperiodic

- τ -tilings exits, and
- all τ -tilings are aperiodic

Many (most)proofs does not look robust:

- τ -tilings exits, and
- all τ -tilings are aperiodic

Many (most)proofs does not look robust:

Tilings are aperiodic, but close to periodic;

- τ -tilings exits, and
- all τ -tilings are aperiodic

Many (most)proofs does not look robust:

- Tilings are aperiodic, but close to periodic;
- There are periodic configurations that are almost tilings (with a sparse set of tiling errors)

We want the tilings to be very aperiodic.

 every shift changes a significant fraction of positions

- every shift changes a significant fraction of positions
- being far from any periodic

- every shift changes a significant fraction of positions
- being far from any periodic

Such configurations do exist. Moreover, they can be enforced by tiling rules.

Robustness: sparse errors (or holes) does not matter

Robustness: sparse errors (or holes) does not matter What is sparse ?

Robustness:

sparse errors (or holes) does not matter

What is **sparse** ?

 B_{ε} : Bernoulli distribution where each cell belongs to a random set with probability ε and different cells are independent

Robustness:

sparse errors (or holes) does not matter

What is **sparse** ?

 B_{ε} : Bernoulli distribution where each cell belongs to a random set with probability ε and different cells are independent

The notion of a **sparse set** is reasonable if for small enough ε a B_{ε} -random set is **sparse** with prob. 1

Robust tile set: sparse tiling errors (or holes) does not matter

Robust tile set: **sparse** tiling errors (or holes) does not matter What could does not matter mean? Robust tile set:

sparse tiling errors (or holes) does not matter

What could does not matter mean?

Sparse errors do not change the property of strong aperiodicity.

Robust tile set:

sparse tiling errors (or holes) does not matter

What could does not matter mean?

Sparse errors do not change the property of strong aperiodicity.

Theorem [Durand-R.-Shen] There exists a tile set τ such that for all small enough ε the following is true for B_{ε} -almost all sets H:

Every tiling of $\mathbb{Z}^2 \setminus H$ is very aperiodic (every non-zero translation changes > 10% of tiles).

1. introduce some redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2 × 2 holes)

1. introduce some redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2 × 2 holes)

2. a small miracle: self-similarity \Rightarrow we can correct an error of any size!

1. introduce some redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2 × 2 holes)

2. a small miracle: self-similarity \Rightarrow we can correct an error of any size!

3. a real miracle: we can correct a *random* set of miracles (with prob 1)

A B_{ε} -random set consists of isolated "islands" of different levels

.

.

.

.

.

· · .

÷

.

・ < 言 > < 言 > こ < つ < で 7/16

Isolated 0-level islands:

★ E ★ E ★ E ★ O Q O

8/16

Clean up 0-level islands:

. .

. -

1

÷.,

▶ < 콜▶ < 콜▶ 콜 ∽ 의 ↔ 9 / 16

Isolated 1-level islands:

Clean up 1-level islands:

★ E ► ★ E ► E → Q ← 11/16

2-level island:

With probability 1 the cleaning procedure converges. Moreover, with probability 1 only the fraction $O(\varepsilon)$ of points is involved in the correcting procedure.

<ロト <回 > < 注 > < 注 > < 注 > 注) Q (~ 14/16

Idea: embed some substitution.

Idea: embed some substitution.

E.g., implement the Thue–Morse substitution rule:

$$0 \to \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \quad 1 \to \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

Idea: embed some substitution.

E.g., implement the Thue–Morse substitution rule:

$$0 \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad 1 \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$0 \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \rightarrow \cdots$$

Idea: embed some substitution.

E.g., implement the Thue–Morse substitution rule:

$$0 \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad 1 \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$0 \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \rightarrow \cdots$$

Lemma. The limit configuration of the Thue–Morse substitution rule is strongly aperiodic.

self-similar tiling

- self-similar tiling
- Iocal robustness: patching isolated holes

- self-similar tiling
- Iocal robustness: patching isolated holes
- split a random set of holes in isolated islands

- self-similar tiling
- Iocal robustness: patching isolated holes
- split a random set of holes in isolated islands
- embed a very periodic substitution rule (e.g., Thue-Morse)

- self-similar tiling
- Iocal robustness: patching isolated holes
- split a random set of holes in isolated islands
- embed a very periodic substitution rule (e.g., Thue-Morse)

And it works!

Once again:

Theorem. There exists a tile set τ such that for all small enough ε the following is true for B_{ε} -almost all sets H:

Every tiling of $\mathbb{Z}^2 \setminus H$ is very aperiodic (every non-zero translation changes > 10% of tiles).

Once again:

Theorem. There exists a tile set τ such that for all small enough ε the following is true for B_{ε} -almost all sets H:

Every tiling of $\mathbb{Z}^2 \setminus H$ is very aperiodic (every non-zero translation changes > 10% of tiles).

Question: How to achieve the "robustness" property without fixed-point?