A counterexample to a conjecture of Lagarias and
Pleasants

Julien Cassaigne

March 6, 2006

1 Introduction
In [1], Lagarias and Pleasants propose the following conjecture:

Conjecture 1 Any aperiodic Delone set X in R? satisfies

Nx (T
lim sup x(T)

0
T—o0 Td ~

where Nx (T') is the patch-counting function of X, that is, the number of patches
of radius T in X up to translation.

In the setting of multidimensional words, the above conjecture translates as
follows:

Conjecture 2 Let A be an alphabet and u a word in AZd, where d > 1. Let
P(n) be the one-parameter complexity function of u, that is, the number of
factors of size n x --- x n that occur in u. If P(n) = o(n?), then u is periodic.

Conjecture 2 is true for d = 1 and d = 2. Actually, stronger statements hold.
For d = 1, the hypothesis P(n) = o(n?) can be replaced with 3n, P(n) < n,
by the theorem of Morse and Hedlund [2]. For d = 2. it can be replaced with
In, P(n) < n?/16 by the result of Quas and Zamboni [4], and it is conjectured
that it can be replaced with 3n, P(n) < n? (Nivat’s conjecture [3]). However,
Sander and Tijdeman [5] showed that the conjecture cannot be strengthened in
a similar way for d > 3.

In this note, we construct a counterexample to Conjecture 2 (and thus also to
Conjecture 1) when d > 3, showing that P(n) can be as low as n?/o(1) for any d.
Moreover, the multidimensional word we construct is uniformly recurrent, so the
conjectures cannot be repaired by just adding this condition.



2 Construction

Let d > 3. We construct a d-dimensional word u € {0, 1}Zd.
Let (r;) be an increasing sequence of positive integers, to be chosen later,

with 7o = 1, and let
m—1

qm = H i,
=0

so that g9 = ¢1 = 1.
We define u = (ux)xezd, X = (1, T2,...,2q), as follows:

e If x4 =0, then ux = 0.

o If x4 # 0, let m be the largest integer such that g,, divides x4 (note that
m >1),and let j € {1,...,d—1} be such that j =m (mod d—1). Then
ux = 1 if gp,—1 divides x;, ux = 0 otherwise.

Theorem 1 The d-dimensional word u defined above is aperiodic and uni-

formly recurrent, and its one-parameter complexity function satisfies P(n) =
o(n?).

The remaining sections are devoted to the proof of this theorem.

3 Aperiodicity

Let us first check that the d-dimensional word u is aperiodic.

Indeed, let t = (t,t2,...,tq) € Z4\ {0}.

If t4 # 0, consider x = (0,...,0,—t4) and y = (t1,...,t4-1,0). By construc-
tion, ux = 1 and uy = 0, so t =y — x cannot be a period.

If t; = 0, choose j such that ¢t; # 0 and m such that m = j (mod d — 1)
and ¢m,—1 > |t;|. Consider then x = (0,...,0,¢y,) and y = (t1,...,ta—1,Gm)-
By construction, ux = 1 and uy =0, so t =y — x cannot be a period either.

We have just proved that u does not have any non-trivial period.

4 Uniform recurrence

To prove that u is uniformly recurrent, it is sufficient to show that for infinitely
many n, there is a NV such that the factor of size n x - -+ X n centered at 0 occurs
in any factor of size N x --- x N. We shall prove this when n is of the form
2gp — 1 for some p > 1, with N = g,12 + 2¢g, — 2. Actually, we prove that the
factor of size (2¢, — 1) X --- X (2¢, — 1) centered at 0 also occurs centered at
(k1qp41 + Gps - - - ka—1Gp+1 + @p, kaGpr2) for any (ky, ks, ... ka) € Z.

Indeed, let x be such that |z;| < gp for all 4, and y = x + (kigp+1 +
Qs -+ ka—1Gp+1 + Gp, kaGp+2)-

If 4 = 0, then ux = 0, and g,42 divides yq but gp+1 does not divide y; for
any j < d, so that uy, =0 = ux.



If z4 # 0, let m be the largest integer such that ¢, divides z4. Note that
1 < m < p, and that m is also the largest integer such that g, divides yq.
Let j € {1,...,d — 1} be such that j = m (mod d — 1). Then uyx = 1 if and
only if ¢p,—1 divides z;, and uy = 1 if and only if g,,—1 divides y;. As y; = x;
(mod gr,—1), it follows that uy, = ux.

5 Complexity

Fix n > 1. Let p be the largest integer such that n > ¢,, and vbeannx---xn
factor of u, occurring at some position x.

For each z such that 0 < z < n, let v, be the z-th layer of v, i.e., the
d — 1-dimensional word obtained from v by fixing the last coordinate to be z.
By construction of u, each layer v, is determined by the value of z; modulo
Gm—1, where m = m(z) is the largest integer such that g,, divides x4 + z and
j=m (modd-—1).

Order the values taken by m(z) in decreasing order: mg, mq, ..., ms. For
0<i<s,letj; =m; (modd— 1) and choose some z; such that m(z;) = m;.
Observe that m may be arbitrarily large, but m; < p since g,, divides z1 — 2o,
so that g, < n. Also, once zy is fixed, then m(z) is determined for all z # 0: it
is the largest m such that g, divides z — zy. Observe also that g, +1 > 1 > ¢y,
so that mg > p.

We distinguish two cases.

First case: mg — 1 < p. Then mg has only two possible values, p and p + 1.
The factor v is entirely defined by mg, 29, and z;, mod ¢y,,—1 for 0 < i < s.
There are at most 2n [[%_ ¢; such factors.

Second case: my — 1 > p. Then either layer v,, is non-zero, and it is
determined by jo and some 0 < y < n such that z;, +y = 0 (mod ¢my—1),
or layer v,, is zero, and we set y = n. The factor v is entirely defined by
Jo, %0, ¥, and x;, mod ¢m,—1 for 1 < i < s. As m; < p, there are at most
(d —1)n(n+ 1) [I’~y @ such factors.

Summing both numbers, we find that

p—1 p—1
P(n) <n(2gy+ (d—1)(n+1) [[ e <240’ [ a: -
=0 =0

We can now choose the sequence (r;). Let (4;) be any nondecreasing se-
quence of integers tending to +oo (as slowly as we want). We define (r;) in-
ductively, starting with ro = 1. Assume r; is constructed for i < m, so that
q; = Hf;& r; is defined for j < m. Let then r,, be the smallest integer such
that 7, > rm—1 and Ay, . > 2d ][/~ @-

We then have P(n) < nQqu < n2A, for all n > ¢o. Taking A; = [\ﬂj for
instance, we get P(n) = o(n?).
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