A counterexample to a conjecture of Lagarias and Pleasants

Julien Cassaigne

March 6, 2006

1 Introduction

In [1], Lagarias and Pleasants propose the following conjecture:

Conjecture 1 Any aperiodic Delone set \(X \) in \(\mathbb{R}^d \) satisfies

\[
\limsup_{T \to \infty} \frac{N_X(T)}{T^d} > 0
\]

where \(N_X(T) \) is the patch-counting function of \(X \), that is, the number of patches of radius \(T \) in \(X \) up to translation.

In the setting of multidimensional words, the above conjecture translates as follows:

Conjecture 2 Let \(A \) be an alphabet and \(u \) a word in \(A^{2^d} \), where \(d \geq 1 \). Let \(P(n) \) be the one-parameter complexity function of \(u \), that is, the number of factors of size \(n \times \cdots \times n \) that occur in \(u \). If \(P(n) = o(n^d) \), then \(u \) is periodic.

Conjecture 2 is true for \(d = 1 \) and \(d = 2 \). Actually, stronger statements hold. For \(d = 1 \), the hypothesis \(P(n) = o(n^d) \) can be replaced with \(\exists n, P(n) \leq n \), by the theorem of Morse and Hedlund [2]. For \(d = 2 \), it can be replaced with \(\exists n, P(n) \leq n^2/16 \) by the result of Quas and Zamboni [4], and it is conjectured that it can be replaced with \(\exists n, P(n) \leq n^2 \) (Nivat’s conjecture [3]). However, Sander and Tijdeman [5] showed that the conjecture cannot be strengthened in a similar way for \(d \geq 3 \).

In this note, we construct a counterexample to Conjecture 2 (and thus also to Conjecture 1) when \(d \geq 3 \), showing that \(P(n) \) can be as low as \(n^2/o(1) \) for any \(d \). Moreover, the multidimensional word we construct is uniformly recurrent, so the conjectures cannot be repaired by just adding this condition.
2 Construction

Let $d \geq 3$. We construct a d-dimensional word $u \in \{0, 1\}^Z$.

Let (r_i) be an increasing sequence of positive integers, to be chosen later, with $r_0 = 1$, and let

$$q_m = \prod_{i=0}^{m-1} r_i,$$

so that $q_0 = q_1 = 1$.

We define $u = (u_x)_{x \in \mathbb{Z}^d}$, $x = (x_1, x_2, \ldots, x_d)$, as follows:

- If $x_d = 0$, then $u_x = 0$.
- If $x_d \neq 0$, let m be the largest integer such that q_m divides x_d (note that $m \geq 1$), and let $j \in \{1, \ldots, d-1\}$ be such that $j = m \pmod{d-1}$. Then $u_x = 1$ if q_m-1 divides x_j, $u_x = 0$ otherwise.

Theorem 1 The d-dimensional word u defined above is aperiodic and uniformly recurrent, and its one-parameter complexity function satisfies $P(n) = o(n^3)$.

The remaining sections are devoted to the proof of this theorem.

3 Aperiodicity

Let us first check that the d-dimensional word u is aperiodic.

Indeed, let $t = (t_1, t_2, \ldots, t_d) \in \mathbb{Z}^d \setminus \{0\}$.

If $t_d \neq 0$, consider $x = (0, \ldots, 0, -t_d)$ and $y = (t_1, \ldots, t_d-1, 0)$. By construction, $u_x = 1$ and $u_y = 0$, so $t = y - x$ cannot be a period.

If $t_d = 0$, choose j such that $t_j \neq 0$ and m such that $m = j \pmod{d-1}$ and $q_{m-1} > |t_j|$. Consider then $x = (0, \ldots, 0, q_m)$ and $y = (t_1, \ldots, t_{d-1}, q_m)$.

By construction, $u_x = 1$ and $u_y = 0$, so $t = y - x$ cannot be a period either.

We have just proved that u does not have any non-trivial period.

4 Uniform recurrence

To prove that u is uniformly recurrent, it is sufficient to show that for infinitely many n, there is a N such that the factor of size $n \times \cdots \times n$ centered at 0 occurs in any factor of size $N \times \cdots \times N$. We shall prove this when n is of the form $2q_p - 1$ for some $p \geq 1$, with $N = q_{p+2} + 2q_p - 2$. Actually, we prove that the factor of size $(2q_p - 1) \times \cdots \times (2q_p - 1)$ centered at 0 also occurs centered at $(k_1q_{p+1} + q_p, \ldots, k_{d-1}q_{p+1} + q_p, kdq_{p+2})$ for any $(k_1, k_2, \ldots, k_d) \in \mathbb{Z}^d$.

Indeed, let x be such that $|x_i| < q_p$ for all i, and $y = x + (k_1q_{p+1} + q_p, \ldots, k_{d-1}q_{p+1} + q_p, kdq_{p+2})$.

If $x_d = 0$, then $u_x = 0$, and q_{p+2} divides y_d but q_{p+1} does not divide y_j for any $j < d$, so that $u_y = 0 = u_x$.

2
If \(x_d \neq 0 \), let \(m \) be the largest integer such that \(q_m \) divides \(x_d \). Note that
\[1 \leq m < p, \text{ and that } m \text{ is also the largest integer such that } q_m \text{ divides } y_d. \]
Let \(j \in \{1, \ldots, d-1\} \) be such that \(j = m \pmod{d-1} \). Then \(u_x = 1 \) if and only if \(q_{m-1} \) divides \(x_j \), and \(u_x = 1 \) if and only if \(q_{m-1} \) divides \(y_j \). As \(y_j \equiv x_j \pmod{q_{m-1}} \), it follows that \(u_y = u_x \).

5 Complexity

Fix \(n \geq 1 \). Let \(p \) be the largest integer such that \(n \geq q_p \), and \(v \) be an \(n \times \cdots \times n \) factor of \(u \), occurring at some position \(x \).

For each \(z \) such that \(0 \leq z < n \), let \(v_z \) be the \(z \)-th layer of \(v \), i.e., the \(d-1 \)-dimensional word obtained from \(v \) by fixing the last coordinate to be \(z \).

By construction of \(u \), each layer \(v_z \) is determined by the value of \(x_j \) modulo \(q_{m-1} \), where \(m = m(z) \) is the largest integer such that \(q_m \) divides \(x_d + z \) and \(j = m \pmod{d-1} \).

Order the values taken by \(m(z) \) in decreasing order: \(m_0, m_1, \ldots, m_s \). For \(0 \leq i \leq s \), let \(j_i = m_i \pmod{d-1} \) and choose some \(z_i \) such that \(m(z_i) = m_i \).

Observe that \(m_0 \) may be arbitrarily large, but \(m_1 \leq p \) since \(q_{m_1} \) divides \(z_1 - z_0 \), so that \(q_{m_1} < n \). Also, once \(z_0 \) is fixed, then \(m(z) \) is determined for all \(z \neq 0 \): it is the largest \(m \) such that \(q_m \) divides \(z - z_0 \). Observe also that \(q_{m_0+1} > n \geq q_p \), so that \(m_0 \geq p \).

We distinguish two cases.

First case: \(m_0 - 1 \leq p \). Then \(m_0 \) has only two possible values, \(p \) and \(p + 1 \). The factor \(v \) is entirely defined by \(m_0, z_0 \), and \(x_j \pmod{q_{m_i-1}} \) for \(0 \leq i \leq s \).

There are at most \(2n \prod_{i=0}^{p-1} q_i \) such factors.

Second case: \(m_0 - 1 > p \). Then either layer \(v_{z_0} \) is non-zero, and it is determined by \(j_0 \) and some \(0 \leq y < n \) such that \(x_{j_0} + y = 0 \pmod{q_{m_0-1}} \), or layer \(v_{z_0} \) is zero, and we set \(y = n \). The factor \(v \) is entirely defined by \(j_0, z_0, y, \) and \(x_j \pmod{q_{m_i-1}} \) for \(1 \leq i \leq s \). As \(m_1 \leq p \), there are at most \((d-1)n(n+1) \prod_{i=0}^{p-1} q_i \) such factors.

Summing both numbers, we find that

\[
P(n) \leq n(2q_p + (d-1)(n+1)) \prod_{i=0}^{p-1} q_i \leq 2dn^2 \prod_{i=0}^{p-1} q_i.
\]

We can now choose the sequence \((r_i) \). Let \((A_i) \) be any nondecreasing sequence of integers tending to \(+\infty \) (as slowly as we want). We define \((r_i) \) inductively, starting with \(r_0 = 1 \). Assume \(r_i \) is constructed for \(i < m \), so that \(q_j = \prod_{i=0}^{j_1} r_i \) is defined for \(j \leq m \). Let then \(r_m \) be the smallest integer such that \(r_m > r_{m-1} \) and \(A_{q_m r_m} \geq 2d \prod_{i=0}^{m} q_i \).

We then have \(P(n) \leq n^2 A_{q_p} \leq n^2 A_n \) for all \(n \geq q_2 \). Taking \(A_i = [\sqrt{i}] \) for instance, we get \(P(n) = o(n^3) \).
References

