An aperiodic set of 11 Wang tiles

Emmanuel Jeandel ${ }^{1}$ Michaël Rao ${ }^{2}$

${ }^{1}$ LORIA - Nancy
${ }^{2}$ LIP - Lyon

A Wang tile is a square tile with a color on each border

Given a set of Wang tiles, one try to tile the plane with copies of tiles in the set s.t. two adjacent sides have the same color

(No rotations !)

A tiling of the plane is periodic if there is a translation vector which does not change the tiling

A tile set is periodic if there is a periodic tiling of the plane with this set

A set is periodic if and only if there is a tiling with 2 （not colinear） translation vectors

A set is finite if there is no tiling of the plane with this set
A set is aperiodic if it tiles the plane, but no tiling is periodic

Conjecture (Wang 1961)

Every set is either finite or periodic
False:

Theorem (Berger 1966)

It exists an aperiodic set of Wang tiles

History

- Berger : 20426 tiles in 1966 (lowered down later to 104)
- Knuth : 92 tiles in 1968
- Robinson: 56 tiles in 1971
- Ammann : 16 tiles in 1971
- Grunbaum : 24 tiles in 1987
- Kari and Culik : 14 tiles, then 13 tiles in 1996
- Here : 11 tiles (the fewest possible)

"Kari-Culik" tile set

Theorem (Kari-Culik 1996)

The following set (13 tiles) is aperiodic

New results

Theorem

Every set with at most 10 Wang tiles is either finite or periodic

Theorem
 There is a set with 11 Wang tiles which is aperiodic

Transducer

A set of Wang tiles can be seen as a transducer
A transducer is a finite automaton where each transition has an input letter and an output letter
$\mathcal{T}=(H, V, T)$ where $T \subseteq H^{2} \times V^{2}$
We note $w \mathcal{T} w^{\prime}$ if the transducer \mathcal{T} writes w^{\prime} when it reads w
(Transducer on $\Sigma=$ Automaton on Σ^{2})

"Kari-Culik" tile set

Figure: Kari-Culik tile set.

Simplification

If \mathcal{T} has a transition a between two strongly connected components, then \mathcal{T} is finite (resp. periodic) if and only if $\mathcal{T} \backslash\{a\}$ is finite (resp. periodic)

Let $s(\mathcal{T})$ be the union of strongly connected components of \mathcal{T}
\mathcal{T} is finite (resp. periodic, aperiodic) if and only if $s(\mathcal{T})$ is finite (resp. periodic, aperiodic)

Composition and power

Let $\mathcal{T}=(H, V, T)$ and $\mathcal{T}^{\prime}=\left(H^{\prime}, V, T\right)$ be two transducers
Then $\mathcal{T} \circ \mathcal{T}^{\prime}=\left(H \times H^{\prime}, V, T^{\prime \prime}\right)$ where:

$$
T^{\prime \prime}=\left\{\left(\left(w, w^{\prime}\right),\left(e, e^{\prime}\right), s, n^{\prime}\right):(w, e, s, x) \in T,\left(w^{\prime}, e^{\prime}, x, n^{\prime}\right)\right\}
$$

$\mathcal{T}^{k}=\mathcal{T}^{k-1} \circ \mathcal{T}$

Power

Proposition

There is $k \in \mathbb{N}$ s.t. $s\left(\mathcal{T}^{k}\right)$ is empty iff \mathcal{T} is finite

Proposition

There is $k \in \mathbb{N}$ s.t. there is a bi-infinite word w such that $w \mathcal{T}^{k} w$ iff \mathcal{T} is periodic

Enumeration (I)

To enumerate all sets with n tiles, we compute all oriented graphs with n arrows (with loops and multiple arrows)

For every pair of graphs G and G^{\prime}, we try every n ! bijections between the arrows of G and G^{\prime}

We only consider graphs without arrows between two strongly connected components.

n	nb. graphs
8	2518
9	13277
10	77810
11	493787

Enumeration (II)

For every generated set \mathcal{T}, we compute $s\left(\mathcal{T}^{k}\right)$ until:

- $s\left(\mathcal{T}^{k}\right)$ is empty \rightarrow the set is finite
- $\exists w$ s.t. $w s\left(\mathcal{T}^{k}\right) w \rightarrow$ is periodic
- The computer run out of memory \rightarrow the computer cannot conclude...

Optimizations:

- Cut branches in the exploration of n ! bijections
- Make tests on \mathcal{T} and $\mathcal{T}^{\text {tr }}$ on the same time
- Use (sometimes) bi-simulation to simplify transducers

Result ($n \leq 10$)

Theorem

Every set of n Wang tile, $n \leq 10$, is finite or periodic

- ~ 4 days on ~ 100 cores
- Only one problematic case

The only problematic case with 10 tiles

"Kari-Culik" type $\times 2, \times \frac{1}{3}$. We have to use compactness to show that this tile-set is finite

Definitions and history Generation of set with at most 10 tiles Aperiodic set of 11 tiles

From $\mathcal{T}^{\text {to }} \mathcal{T}_{D}$
From \mathcal{T}_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Aperiodic set of 11 tiles

Proof (squetch.)

Theorem

\mathcal{T} is aperiodic
Ideas:

- It is the union if two transducers \mathcal{T}_{0} and \mathcal{T}_{1} (as for Kari-Culik)
- In a tiling by \mathcal{T}, we can merge layers into \mathcal{T}_{10000} and \mathcal{T}_{1000}
- We get a new transducer \mathcal{T}_{D} with 28 transitions, which is the union of $\mathcal{T}_{a} \simeq \mathcal{T}_{10000}$ and $\mathcal{T}_{b} \simeq \mathcal{T}_{1000}$
- We define the family T_{n}, with $T_{n+3}=T_{n+1} \circ T_{n} \circ T_{n+1}$
- We show $\mathcal{T}_{b}=T_{0}, \mathcal{T}_{\text {aa }}=T_{1}, \mathcal{T}_{\text {bab }}=T_{2}$
- The only admissible vertical word for \mathcal{T}_{D} is the Fibonacci word

```
From T
From }\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```

\mathcal{T} is the union of \mathcal{T}_{0} and \mathcal{T}_{1}, with (resp.) 9 and 2 tiles For $w \in\{0,1\}^{*} \backslash\{\epsilon\}$, let $\mathcal{T}_{w}=\mathcal{T}_{w[1]} \circ \mathcal{T}_{w[2]} \circ \ldots \mathcal{T}_{w[|w|]}$

Fact

$s\left(\mathcal{T}_{11}\right), s\left(\mathcal{T}_{101}\right), s\left(\mathcal{T}_{1001}\right)$ and $s\left(\mathcal{T}_{00000}\right)$ are empty

If t is a tiling by \mathcal{T}, then there exists a bi-infinite word $w \in\{1000,10000\}^{\mathbb{Z}}$ s.t. $t(x, y) \in T\left(\mathcal{T}_{w[y]}\right)$

Let $\mathcal{T}_{A}=s\left(\mathcal{T}_{1000} \cup \mathcal{T}_{10000}\right)$
There is a bijection between tilings by \mathcal{T} and tilings by \mathcal{T}_{A}

```
From \mathcal{T}}\mathrm{ to }\mp@subsup{\mathcal{T}}{D}{
From }\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```


Figure: \mathcal{T}_{A}, the union of $s\left(\mathcal{T}_{10000}\right)$ (top) and $s\left(\mathcal{T}_{1000}\right)$ (bottom).
E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

```
From \mathcal{T}}\mathrm{ to }\mp@subsup{\mathcal{T}}{D}{
From }\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```


Figure: \mathcal{T}_{A}, the union of $s\left(\mathcal{T}_{10000}\right)$ (top) and $s\left(\mathcal{T}_{1000}\right)$ (bottom).
E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

Definitions and history

From \mathcal{T} to \mathcal{T}_{D}
From T_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Elimination of transitions with 2, 3 or 4

Figure: $\mathcal{T}_{B}=s\left(s\left(\mathcal{T}_{A}{ }^{\mathrm{tr} r}\right)^{\mathrm{tr}}\right)$.

Simplification by bi-simulation

Figure: \mathcal{T}_{C}, "simplification" of \mathcal{T}_{B}.

```
From T
From T}\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```


Proposition

Let $\left(w_{i}\right)_{i \in \mathbb{Z}}$ be a bi-infinite sequence of bi-infinite words s.t. $w_{i} \mathcal{T}_{C} w_{i+1}$ for every $i \in \mathbb{Z}$.
Then for every $i \in \mathbb{Z}, w_{i}$ is $(010,101)$-free
This follow from the fact than $s\left(\left(\mathcal{T}_{C}{ }^{\text {tr }}\right)^{3}\right)$ does not contains the state 010, nor the state 101

Every tiling by \mathcal{T}_{C} is in bijection with a tiling by \mathcal{T}_{D}

```
From T}\mathrm{ to }\mp@subsup{\mathcal{T}}{D}{
From }\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```


Figure: \mathcal{T}_{D}, the union of \mathcal{T}_{a} (top) and \mathcal{T}_{b} (bottom)
T_{n} for even n :

$g(n)$ is the $(n+2)$-th Fibonacci number: $g(0)=2, g(1)=3$, $g(n+2)=g(n+1)+g(n)$
T_{n} for odd n :

$g(n)$ is the $(n+2)$-th Fibonacci number: $g(0)=2, g(1)=3$, $g(n+2)=g(n+1)+g(n)$

```
From T
From }\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```


Case of \mathcal{T}_{b}

In \mathcal{T}_{b}, every long enough path passes through " N "
Thus \mathcal{T}_{b} is equivalent to:

00000	$\mid 10011$	
00000000	$\mid 11100011$	
00111000	$\mid 11111111$	
0	00110	$\mid 11111$
0		
0000011000	1110011111	
001000	$\mid 111011$	
0		
0000010	$\mid 1110011$	
0011000	$\mid 1011111$	

From $\mathcal{T}^{\text {to }} \mathcal{T}_{D}$
From \mathcal{T}_{D} to $T_{0}, T_{1}, T_{\mathbf{2}}$
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Case of \mathcal{T}_{b}

In \mathcal{T}_{b}, every long enough path passes through " N " Thus \mathcal{T}_{b} is equivalent to:

$\sim \sim$| 00000 | $\mid 10011$ |
| :--- | :--- |
| $\sim \sim$ | 00000000 |
| 00111000 | $\mid 11100011$ |
| 00110 | $\mid 1111111$ |
| 0000011000 | 1110011111 |

\mathcal{T}_{b} is equivalent to T_{0}.

From $\mathcal{T}^{\text {to }} \mathcal{T}_{D}$
From \mathcal{T}_{D} to $T_{0}, T_{1}, T_{\mathbf{2}}$
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Case of $\mathcal{T}_{\text {aa }}$

Figure: $s\left(\mathcal{T}_{\text {aa }}\right)$

In $s\left(\mathcal{T}_{\text {aa }}\right)$, every long path passes through "eb". It is equivalent to:

$\mathcal{T}_{\text {aa }}$ is equivalent to T_{1}

From $\mathcal{T}^{\text {to }} \mathcal{T}_{D}$
From \mathcal{T}_{D} to $T_{0}, T_{1}, T_{\mathbf{2}}$
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Case of $\mathcal{T}_{\text {bab }}$

Figure: $s\left(\mathcal{T}_{b a b}\right)$

Every long path passes through "MdP". Thus it is equivalent to :

| 0000000000000 | $\mid 11111001111$ |
| :--- | :--- | :--- |
| 0000000000000000000 | $\mid 111111111111110001111$ |
| 00000000001110000000 | $\mid 111111111111111111111$ |
| 0000000000011 | $\mid 111111111111$ |
| $0000000000000000001100000 \mid 11111111111100111111111111$ | |

If we shift the input (3 times) and the output (6 times), we get:

~国 | 0000000000000 | $\mid 1001111111111$ |
| :--- | :--- |
| 000000000000000000000 | $\mid 11111110001111111111$ |
| 000000001110000000000 | $\mid 111111111111111111111$ |
| 0000000011000 | $\mid 1111111111111$ |
| $0000000000000001100000000 \mid 1111110011111111111111111$ | |

$\mathcal{T}_{b a b}$ is equivalent to T_{2}

Fact

$s\left(\mathcal{T}_{\text {bb }}\right), s\left(\mathcal{T}_{\text {aaa }}\right)$ and $s\left(\mathcal{T}_{\text {babab }}\right)$ are empty

If t is a tiling by \mathcal{T}_{D}, then there is a bi-infinite word $w \in\{b, a a, b a b\}^{\mathbb{Z}}$ s.t. $t(x, y) \in T\left(\mathcal{T}_{w[y]}\right)$

That is, the tilings with \mathcal{T}_{D} are images of the tilings by

$$
\mathcal{T}_{b} \cup \mathcal{T}_{a a} \cup \mathcal{T}_{b a b} \simeq T_{0} \cup T_{1} \cup T_{2}
$$

```
From T
From T}\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From }\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```

T_{n} for even n :

$g(n)$ is the $(n+2)$-th Fibonacci number: $g(0)=2, g(1)=3$, $g(n+2)=g(n+1)+g(n)$

```
From T To }\mp@subsup{\mathcal{T}}{D}{
From T}\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From }\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```

T_{n} for odd n :

$g(n)$ is the $(n+2)$-th Fibonacci number: $g(0)=2, g(1)=3$, $g(n+2)=g(n+1)+g(n)$

```
From T}\mathrm{ to }\mp@subsup{\mathcal{T}}{D}{
From T}\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```

One supposes than n is even. (The odd case is similar.)
One supposes that $T_{n} \cup T_{n+1} \cup T_{n+2}$ tiles the plane
We show that $T_{n+1} \cup T_{n+2} \cup T_{n+3}$ tiles, and that:

$$
T_{n+3} \simeq T_{n+1} \circ T_{n} \circ T_{n+1}
$$

T_{n} is surrounded by T_{n+1}
(output of T_{n+1} has more 0 's than 1 's, T_{n} and output T_{n+2} have more 1's than 0 's)

Transitions of T_{n} :

Transitions of T_{n+1} :

\square
A

Let's take T_{n}. (We forget α.)

Lemma

The following words cannot appear:

- $\gamma \omega, \gamma \gamma, \gamma \beta, \beta \omega, \beta \beta, \beta \epsilon \beta, \gamma \epsilon \beta, \beta \delta \epsilon \beta, \gamma \delta \epsilon \beta$
- $\omega \delta, \delta \delta, \epsilon \delta, \omega \epsilon, \epsilon \epsilon, \epsilon \beta \epsilon, \epsilon \beta \delta, \epsilon \beta \gamma \epsilon, \epsilon \beta \gamma \delta$
- ω

Lemma

Every infinite path in the transducer T_{n} can be seen as an infinite path in the following transducer:

Lemma

Every infinite path in the transducer T_{n} can be seen as an infinite path in the following transducer:

$\gamma \delta \rightarrow \mathbb{A}^{\prime}$

\mathbb{D}			\mathbb{A}
γ		α	
\mathbb{A}		\mathbb{C}	

$\epsilon \rightarrow \mathbb{B}^{\prime}$

[^0]From \mathcal{T} to \mathcal{T}_{D}
From T_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$
$\beta \rightarrow \mathbb{E}^{\prime}:$

\mathbb{E}	\mathbb{A}	
α	β	α
\mathbb{A}		\mathbb{E}

$\beta \gamma \epsilon \rightarrow \mathbb{C}^{\prime}:$

\mathbb{E}	\mathbb{A}		\mathbb{C} I		\mathbb{A}		
α	β	α		${ }^{\delta}$	α	ϵ	α
\mathbb{A}		\mathbb{C}		\mathbb{A}		\mathbb{B}	

From \mathcal{T} to \mathcal{T}_{D}
From T_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$
$\beta \delta \epsilon \rightarrow \mathbb{D}^{\prime}:$

\mathbb{E}	A		\\|		A	
α	β	α	γ	α	ϵ	α
A		$\\| \mathbb{D}$		A		\mathbb{B}

$\beta \delta \gamma \epsilon \rightarrow \mathbb{O}^{\prime}:$

\mathbb{E}	A		\mathbb{B}	A	\underline{D}		A	
α	β	α	${ }^{\delta}$	α	γ	α	ϵ	α
			\mathbb{C}^{1}		\mathbb{E}			B

It remains to show that one cannot have a stack of layers $T_{n+1}, T_{n}, T_{n+1}, T_{n}, T_{n+1}$

We can merge layers of a tiling with $T_{n} \cup T_{n+1} \cup T_{n+2}$ by:
(1) T_{n+1}
(2) T_{n+2}
(3) $T_{n+1} T_{n} T_{n+1} \simeq T_{n+3}$

```
From T to }\mp@subsup{\mathcal{T}}{D}{
From T}\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```

$T_{n} \simeq \mathcal{T}_{u_{n}}$ where:

$$
u_{0}=b, u_{1}=a a, u_{2}=b a b
$$

and

$$
u_{n+3}=u_{n+1} u_{n} u_{n+1}
$$

$$
\left(u_{n}\right)_{n \geq 0}=(b, \text { aa, bab }, \text { aabaa, babaabab }, \ldots)
$$

is a sequence of factors of the Fibonacci word
(the "singular factors")

From \mathcal{T} to \mathcal{T}_{D}
From T_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Fibonacci Word

Aperiodic word

$$
w_{f}=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a \ldots
$$

Fixed point of the morphism $a \rightarrow a b, b \rightarrow a$
$v_{0}=a, v_{1}=a b$ and $v_{n+2}=v_{n+1} v_{n}$
v_{i} converges to w_{f}
$\left(v_{n}\right)_{n \geq 0}=(a, \underline{a} b, \underline{a b} a, \underline{a b a a} b, \underline{a b a a b a b} a, \underline{a b a a b a b a a b a a b} b, \ldots)$
$\left(u_{n}\right)_{n \geq 0}=(b$, aa,,$b \underline{a b}$, aabaa,, babaabab, a abaababaabaa, \ldots.

From $\mathcal{T}_{\text {to }} \mathcal{T}_{D}$
From \mathcal{T}_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Aperiodic set with 11 tiles

From $\mathcal{T}_{\text {to }} \mathcal{T}_{D}$
From \mathcal{T}_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Aperiodic set with 11 tiles and 4 colors


```
From T
From T}\mp@subsup{T}{D}{}\mathrm{ to }\mp@subsup{T}{0}{},\mp@subsup{T}{1}{},\mp@subsup{T}{2}{
From T}\mp@subsup{T}{n}{},\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{}\mathrm{ to }\mp@subsup{T}{n+1}{},\mp@subsup{T}{n+2}{},\mp@subsup{T}{n+3}{
```


Open question 1 : Another aperiodic set?

Tiles sets with 11 tiles:

- 2 aperiodic (and 1 other probably very close)
- 23 others "candidates"
- 9 of "Kari-Culik" type (and probably finite)
- 14 not "Kari-Culik"
- 1 strange (interesting) candidate:

From \mathcal{T} to \mathcal{T}_{D}
From T_{D} to T_{0}, T_{1}, T_{2}
From T_{n}, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Open question 2 : "proof from the book"?

If we look at densities of 1 on each line on an infinite tiling, one transducer add $\varphi-1$ and the other add $\varphi-2$.
\rightarrow "additive" Kari-Culik?

[^0]: E. Jeandel, M. Rao

 An aperiodic set of 11 Wang tiles

