An aperiodic set of 11 Wang tiles

Emmanuel Jeandel¹ <u>Michaël Rao</u>²

¹LORIA - Nancy

²LIP - Lyon

E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

< /i>

A Wang tile is a square tile with a color on each border

Given a set of Wang tiles, one try to tile the plane with copies of tiles in the set s.t. two adjacent sides have the same color

(No rotations !)

A tiling of the plane is *periodic* if there is a translation vector which does not change the tiling

A tile set is *periodic* if there is a periodic tiling of the plane with this set

A set is periodic if and only if there is a tiling with 2 (not colinear) translation vectors

< /i>

A set is *finite* if there is no tiling of the plane with this set A set is *aperiodic* if it tiles the plane, but no tiling is periodic

Conjecture (Wang 1961)

Every set is either finite or periodic

False:

Theorem (Berger 1966)

It exists an aperiodic set of Wang tiles

Image: A matrix

History

- Berger : 20426 tiles in 1966 (lowered down later to 104)
- Knuth : 92 tiles in 1968
- Robinson : 56 tiles in 1971
- Ammann : 16 tiles in 1971
- Grunbaum : 24 tiles in 1987
- Kari and Culik : 14 tiles, then 13 tiles in 1996
- Here : 11 tiles (the fewest possible)

"Kari-Culik" tile set

Theorem (Kari-Culik 1996)

The following set (13 tiles) is aperiodic

< D > < P > < P > < P >

э

New results

Theorem

Every set with at most 10 Wang tiles is either finite or periodic

Theorem

There is a set with 11 Wang tiles which is aperiodic

▲ 同 ▶ → ▲ 三

Transducer

A set of Wang tiles can be seen as a transducer

A *transducer* is a finite automaton where each transition has an input letter and an output letter

$$\mathcal{T} = (\mathcal{H}, \mathcal{V}, \mathcal{T})$$
 where $\mathcal{T} \subseteq \mathcal{H}^2 imes \mathcal{V}^2$

We note $w\mathcal{T}w'$ if the transducer \mathcal{T} writes w' when it reads w

(Transducer on Σ = Automaton on Σ^2)

Transducer view Power Enumeration and results

"Kari-Culik" tile set

Figure: Kari-Culik tile set.

< 口 > < 同

э

Simplification

If \mathcal{T} has a transition a between two strongly connected components, then \mathcal{T} is finite (resp. periodic) if and only if $\mathcal{T} \setminus \{a\}$ is finite (resp. periodic)

Let $s(\mathcal{T})$ be the union of strongly connected components of \mathcal{T} \mathcal{T} is finite (resp. periodic, aperiodic) if and only if $s(\mathcal{T})$ is finite (resp. periodic, aperiodic)

Transducer view Power Enumeration and results

Composition and power

Let
$$\mathcal{T} = (H, V, T)$$
 and $\mathcal{T}' = (H', V, T)$ be two transducers
Then $\mathcal{T} \circ \mathcal{T}' = (H \times H', V, T'')$ where:

$$T'' = \{((w, w'), (e, e'), s, n') : (w, e, s, x) \in T, (w', e', x, n')\}$$

 $\mathcal{T}^k = \mathcal{T}^{k-1} \circ \mathcal{T}$

э

< 同 ト < 三 ト

Transducer view Power Enumeration and results

Power

Proposition

There is $k \in \mathbb{N}$ s.t. $s(\mathcal{T}^k)$ is empty iff \mathcal{T} is finite

Proposition

There is $k \in \mathbb{N}$ s.t. there is a bi-infinite word w such that $w\mathcal{T}^k w$ iff \mathcal{T} is periodic

Enumeration (I)

To enumerate all sets with n tiles, we compute all oriented graphs with n arrows (with loops and multiple arrows)

For every pair of graphs G and G', we try every n! bijections between the arrows of G and G'

We only consider graphs without arrows between two strongly connected components.

n	nb. graphs
8	2518
9	13277
10	77810
11	493787

Transducer view Power Enumeration and results

Enumeration (II)

For every generated set \mathcal{T} , we compute $s(\mathcal{T}^k)$ until:

- $s(\mathcal{T}^k)$ is empty o the set is finite
- $\exists w \text{ s.t. } ws(\mathcal{T}^k)w
 ightarrow ext{is periodic}$
- $\bullet\,$ The computer run out of memory $\to\,$ the computer cannot conclude...

Optimizations :

- Cut branches in the exploration of *n*! bijections
- Make tests on ${\mathcal T}$ and ${\mathcal T}^{{\operatorname{tr}}}$ on the same time
- Use (sometimes) bi-simulation to simplify transducers

Result $(n \leq 10)$

Transducer view Power Enumeration and results

Theorem

Every set of n Wang tile, $n \leq 10$, is finite or periodic

- ullet \sim 4 days on \sim 100 cores
- Only one problematic case

< ロ > < 同 > < 回 > <

Transducer view Power Enumeration and results

The only problematic case with 10 tiles

"Kari-Culik" type $\times 2$, $\times \frac{1}{3}$. We have to use compactness to show that this tile-set is finite

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 From \mathcal{T}_n , \mathcal{T}_{n+1} , \mathcal{T}_{n+2} to \mathcal{T}_{n+1} , \mathcal{T}_{n+2} , \mathcal{T}_{n+3}

Aperiodic set of 11 tiles

E. Jeandel, M. Rao

An aperiodic set of 11 Wang tiles

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 From \mathcal{T}_n , \mathcal{T}_{n+1} , \mathcal{T}_{n+2} to \mathcal{T}_{n+1} , \mathcal{T}_{n+2} , \mathcal{T}_{n+3}

イロト イポト イヨト イヨト

Proof (squetch.)

Theorem

 ${\mathcal T}$ is aperiodic

ldeas:

- ullet It is the union if two transducers \mathcal{T}_0 and \mathcal{T}_1 (as for Kari-Culik)
- \bullet In a tiling by $\mathcal{T},$ we can merge layers into \mathcal{T}_{10000} and \mathcal{T}_{1000}
- We get a new transducer T_D with 28 transitions, which is the union of $T_a \simeq T_{10000}$ and $T_b \simeq T_{1000}$
- We define the family T_n , with $T_{n+3} = T_{n+1} \circ T_n \circ T_{n+1}$
- We show $\mathcal{T}_b = T_0$, $\mathcal{T}_{aa} = T_1$, $\mathcal{T}_{bab} = T_2$
- The only admissible vertical word for \mathcal{T}_D is the Fibonacci word

 $\begin{array}{l} \mbox{From } \mathcal{T} \mbox{ to } \mathcal{T}_{\mathcal{D}} \\ \mbox{From } \mathcal{T}_{\mathcal{D}} \mbox{ to } \mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2} \\ \mbox{From } \mathcal{T}_{n}, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} \mbox{ to } \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3} \end{array}$

$$\mathcal{T}$$
 is the union of \mathcal{T}_0 and \mathcal{T}_1 , with (resp.) 9 and 2 tiles
For $w \in \{0,1\}^* \setminus \{\epsilon\}$, let $\mathcal{T}_w = \mathcal{T}_{w[1]} \circ \mathcal{T}_{w[2]} \circ \ldots \mathcal{T}_{w[|w|]}$

Fact

 $s(\mathcal{T}_{11})$, $s(\mathcal{T}_{101})$, $s(\mathcal{T}_{1001})$ and $s(\mathcal{T}_{00000})$ are empty

If t is a tiling by \mathcal{T} , then there exists a bi-infinite word $w \in \{1000, 10000\}^{\mathbb{Z}}$ s.t. $t(x, y) \in \mathcal{T}(\mathcal{T}_{w[y]})$

Let $\mathcal{T}_{\mathcal{A}} = s(\mathcal{T}_{1000} \cup \mathcal{T}_{10000})$

There is a bijection between tilings by \mathcal{T} and tilings by \mathcal{T}_A

 $\begin{array}{l} \mbox{From } \mathcal{T} \mbox{ to } \mathcal{T}_{D} \\ \mbox{From } \mathcal{T}_{D} \mbox{ to } \mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2} \\ \mbox{From } \mathcal{T}_{n}, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} \mbox{ to } \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3} \end{array}$

э

Figure: \mathcal{T}_A , the union of $s(\mathcal{T}_{10000})$ (top) and $s(\mathcal{T}_{1000})$ (bottom).

E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

 $\begin{array}{l} \mbox{From } \mathcal{T} \mbox{ to } \mathcal{T}_{D} \\ \mbox{From } \mathcal{T}_{D} \mbox{ to } \mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2} \\ \mbox{From } \mathcal{T}_{n}, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} \mbox{ to } \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3} \end{array}$

э

Figure: \mathcal{T}_A , the union of $s(\mathcal{T}_{10000})$ (top) and $s(\mathcal{T}_{1000})$ (bottom).

E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2$ From $\mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2}$ to $\mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}$

Elimination of transitions with 2, 3 or 4

Figure: $\mathcal{T}_B = s(s(\mathcal{T}_A^{tr})^{tr}).$

イロト イポト イヨト イヨト

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2$ From $\mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2}$ to $\mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}$

Simplification by bi-simulation

Figure: \mathcal{T}_C , "simplification" of \mathcal{T}_B .

< /i>

 $\begin{array}{l} \mbox{From } \mathcal{T} \mbox{ to } \mathcal{T}_{\mathcal{D}} \\ \mbox{From } \mathcal{T}_{\mathcal{D}} \mbox{ to } \mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2} \\ \mbox{From } \mathcal{T}_{n}, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} \mbox{ to } \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3} \end{array}$

Proposition

Let $(w_i)_{i \in \mathbb{Z}}$ be a bi-infinite sequence of bi-infinite words s.t. $w_i \mathcal{T}_C w_{i+1}$ for every $i \in \mathbb{Z}$. Then for every $i \in \mathbb{Z}$, w_i is (010, 101)-free

This follow from the fact than $s((\mathcal{T}_C^{tr})^3)$ does not contains the state 010, nor the state 101

Every tiling by \mathcal{T}_C is in bijection with a tiling by \mathcal{T}_D

 $\begin{array}{l} \mbox{From } \mathcal{T} \mbox{ to } \mathcal{T}_{D} \\ \mbox{From } \mathcal{T}_{D} \mbox{ to } \mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2} \\ \mbox{From } \mathcal{T}_{n}, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} \mbox{ to } \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3} \end{array}$

(日) (同) (三) (三)

Figure: \mathcal{T}_D , the union of \mathcal{T}_a (top) and \mathcal{T}_b (bottom)

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}}_D \\ \mbox{From \mathcal{T}}_D \mbox{ to \mathbf{T}}_0, \mbox{\mathbf{T}}_1, \mbox{\mathbf{T}}_2 \\ \mbox{From T}_n, \mbox{T}_{n+1}, \mbox{T}_{n+2} \mbox{ to T}_{n+1}, \mbox{T}_{n+2}, \mbox{T}_{n+3} \end{array}$

T_n for even n:

g(n) is the (n + 2)-th Fibonacci number: g(0) = 2, g(1) = 3, g(n + 2) = g(n + 1) + g(n)

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2$ From $\mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2}$ to $\mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}$

T_n for odd n:

g(n) is the (n + 2)-th Fibonacci number: g(0) = 2, g(1) = 3, g(n + 2) = g(n + 1) + g(n)

Case of \mathcal{T}_{h}

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}}_D \\ \mbox{From \mathcal{T}}_D \mbox{ to \mathbf{T}}_0, \mbox{\mathbf{T}}_1, \mbox{\mathbf{T}}_2 \\ \mbox{From T}_n, \mbox{T}_{n+1}, \mbox{T}_{n+2} \mbox{ to T}_{n+1}, \mbox{T}_{n+2}, \mbox{T}_{n+3} \end{array}$

< D > < P > < P > < P >

In \mathcal{T}_b , every long enough path passes through "N" Thus \mathcal{T}_b is equivalent to:

Ν

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}}_D \\ \mbox{From \mathcal{T}}_D \mbox{ to T}_0, \mbox{T}_1, \mbox{T}_2 \\ \mbox{From T}_n, \mbox{T}_{n+1}, \mbox{T}_{n+2} \mbox{ to T}_{n+1}, \mbox{T}_{n+2}, \mbox{T}_{n+3} \end{array}$

< 一型

In \mathcal{T}_b , every long enough path passes through "N" Thus \mathcal{T}_b is equivalent to:

 00000
 |10011

 00000000
 |11100011

 00111000
 |1111111

 00110
 |11111

 0000011000
 |1111111

 \mathcal{T}_b is equivalent to \mathcal{T}_0 .

Case of \mathcal{T}_{h}

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2$ From $\mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2}$ to $\mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Case of \mathcal{T}_{aa}

Figure: $s(\mathcal{T}_{aa})$

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2$ From $\mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2}$ to $\mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}$

< /₽ > < E >

In $s(\mathcal{T}_{aa})$, every long path passes through "eb". It is equivalent to:

 \mathcal{T}_{aa} is equivalent to \mathcal{T}_1

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2$ From $\mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2}$ to $\mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}$

イロト イポト イヨト イヨト

э

Case of \mathcal{T}_{bab}

Figure: $s(\mathcal{T}_{bab})$

From T_D to $\overline{T_0}, \overline{T_1}, \overline{T_2}$

Every long path passes through "MdP". Thus it is equivalent to :

00000000000000 00000000001110000000 000000000011

1111111001111 1111111111111100011111 111111111111111

4 A D A D A D A

If we shift the input (3 times) and the output (6 times), we get:

00000000000000 1001111111111 1111111100011111111111 00000001110000000000 000000011000 111111111111111

 \mathcal{T}_{bab} is equivalent to T_2

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}}_D \\ \mbox{From \mathcal{T}}_D \mbox{ to \mathbf{T}}_0, \mbox{\mathbf{T}}_1, \mbox{\mathbf{T}}_2 \\ \mbox{From T}_n, \mbox{T}_{n+1}, \mbox{T}_{n+2} \mbox{ to T}_{n+1}, \mbox{T}_{n+2}, \mbox{T}_{n+3} \end{array}$

< ロ > < 同 > < 回 > <

Fact

 $s(\mathcal{T}_{bb}), s(\mathcal{T}_{aaa})$ and $s(\mathcal{T}_{babab})$ are empty

If t is a tiling by \mathcal{T}_D , then there is a bi-infinite word $w \in \{b, aa, bab\}^{\mathbb{Z}}$ s.t. $t(x, y) \in \mathcal{T}(\mathcal{T}_{w[y]})$

That is, the tilings with \mathcal{T}_D are images of the tilings by

$$\mathcal{T}_b \cup \mathcal{T}_{aa} \cup \mathcal{T}_{bab} \simeq T_0 \cup T_1 \cup T_2.$$

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 From \mathcal{T}_n , \mathcal{T}_{n+1} , \mathcal{T}_{n+2} to \mathcal{T}_{n+1} , \mathcal{T}_{n+2} , \mathcal{T}_{n+3}

T_n for even n:

g(n) is the (n + 2)-th Fibonacci number: g(0) = 2, g(1) = 3, g(n + 2) = g(n + 1) + g(n)

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 From \mathcal{T}_n , \mathcal{T}_{n+1} , \mathcal{T}_{n+2} to \mathcal{T}_{n+1} , \mathcal{T}_{n+2} , \mathcal{T}_{n+3}

T_n for odd n:

g(n) is the (n + 2)-th Fibonacci number: g(0) = 2, g(1) = 3, g(n + 2) = g(n + 1) + g(n)

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}_D} \\ \mbox{From \mathcal{T}_D to \mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2} \\ \mbox{From \mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} to \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}} \end{array}$

イロト イポト イヨト イヨト

One supposes than *n* is even. (The odd case is similar.)

One supposes that $T_n \cup T_{n+1} \cup T_{n+2}$ tiles the plane

We show that $T_{n+1} \cup T_{n+2} \cup T_{n+3}$ tiles, and that:

$$T_{n+3} \simeq T_{n+1} \circ T_n \circ T_{n+1}.$$

 T_n is surrounded by T_{n+1} (output of T_{n+1} has more 0's than 1's, T_n and output T_{n+2} have more 1's than 0's) Definitions and history Generation of set with at most 10 tiles Aperiodic set of 11 tiles $T_D = T_D = T_D = T_D$ for T_D , $T_D = T_D = T_D$ $T_D = T_D = T_D = T_D = T_D$

E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

```
Let's take T_n. (We forget \alpha.)
```

Lemma

The following words cannot appear:

- $\gamma\omega,\gamma\gamma,\gamma\beta,\beta\omega,\beta\beta,\beta\epsilon\beta,\gamma\epsilon\beta,\beta\delta\epsilon\beta,\gamma\delta\epsilon\beta$
- $\omega\delta, \delta\delta, \epsilon\delta, \omega\epsilon, \epsilon\epsilon, \epsilon\beta\epsilon, \epsilon\beta\delta, \epsilon\beta\gamma\epsilon, \epsilon\beta\gamma\delta$
- ω

< /₽ > < E >

Lemma

Every infinite path in the transducer T_n can be seen as an infinite path in the following transducer:

< ロ > < 同 > < 回 > <

Lemma

Every infinite path in the transducer T_n can be seen as an infinite path in the following transducer:

< ロ > < 同 > < 回 > <

Definitions and history Generation of set with at most 10 tiles Aperiodic set of 11 tiles From T_D to T_D , T_1 , T_2 From T_n , T_{n+1} , T_{n+2} to T_{n+1} , T_{n+2} , T_{n+3}

 $\gamma\delta\to\mathbb{A}'$

	\mathbb{D}		A	
γ		α		δ
A			\mathbb{C}	

 $\epsilon \to \mathbb{B}'$

\mathbb{B}		A	
α	α ε		
A	\mathbb{B}		

Definitions and history Generation of set with at most 10 tiles Aperiodic set of 11 tiles From T_D to T_D , T_1 , T_2 From T_n , T_{n+1} , T_{n+2} to T_{n+1} , T_{n+2} , T_{n+3}

 $\beta \to \mathbb{E}'$:

$\mathbb E$		A
α	β	α
A	E	

$$\beta\gamma\epsilon \to \mathbb{C}'$$
:

E		A	\mathbb{C}				A
α	β	α	δ		α	ϵ	α
A	A C		\mathbb{C}		A		\mathbb{B}

E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

・ロト ・御ト ・ヨト ・ヨト

Definitions and history	
Generation of set with at most 10 tiles	From \mathcal{T}_D to $\overline{\mathcal{T}}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2}$
Aperiodic set of 11 tiles	From T_n, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

 $\beta \delta \epsilon \to \mathbb{D}'$:

E		A					A	
α	β	α	γ		α	ϵ	α	
A		\mathbb{D}		A		\mathbb{B}		

 $\beta\delta\gamma\epsilon \to \mathbb{O}'$:

\mathbb{E}		A	\mathbb{B}	A	\mathbb{D}				A	
α	β	α	δ	α		γ	α	ϵ	α	
A			\mathbb{C}	A		\mathbb{E}	A		\mathbb{B}	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

It remains to show that one cannot have a stack of layers $T_{n+1}, T_n, T_{n+1}, T_n, T_{n+1}$

We can merge layers of a tiling with $T_n \cup T_{n+1} \cup T_{n+2}$ by:

- **1** T_{n+1}
- 2 T_{n+2}
- $T_{n+1} T_n T_{n+1} \simeq T_{n+3}$

イロト イポト イヨト イヨト

э

 ${\mathcal T}_n \simeq {\mathcal T}_{u_n}$ where:

$$u_0 = b, u_1 = aa, u_2 = bab$$

and

$$u_{n+3} = u_{n+1}u_nu_{n+1}$$

 $(u_n)_{n\geq 0} = (b, aa, bab, aabaa, babaabab, \ldots)$

is a sequence of factors of the Fibonacci word (the "singular factors")

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}}_D \\ \mbox{From \mathcal{T}}_D \mbox{ to \mathcal{T}}_0, \mathcal{T}}_1, \mathcal{T}}_2 \\ \mbox{From \mathcal{T}}_n, \mathcal{T}}_{n+1}, \mathcal{T}}_{n+2} \mbox{ to \mathcal{T}}_{n+1}, \mathcal{T}}_{n+2}, \mathcal{T}}_{n+3} \end{array}$

Fibonacci Word

Aperiodic word

Fixed point of the morphism a
ightarrow ab, b
ightarrow a

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to T_0, T_1, T_2 From T_n, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Aperiodic set with 11 tiles

E. Jeandel, M. Rao

An aperiodic set of 11 Wang tiles

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to T_0, T_1, T_2 From T_n, T_{n+1}, T_{n+2} to $T_{n+1}, T_{n+2}, T_{n+3}$

Aperiodic set with 11 tiles and 4 colors

E. Jeandel, M. Rao

An aperiodic set of 11 Wang tiles

 $\begin{array}{l} \mbox{From \mathcal{T} to \mathcal{T}_D} \\ \mbox{From \mathcal{T}_D to \mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2} \\ \mbox{From \mathcal{T}_n, \mathcal{T}_{n+1}, \mathcal{T}_{n+2} to \mathcal{T}_{n+1}, \mathcal{T}_{n+2}, \mathcal{T}_{n+3}} \end{array}$

Open question 1 : Another aperiodic set ?

Tiles sets with 11 tiles:

- 2 aperiodic (and 1 other probably very close)
- 23 others "candidates"
- 9 of "Kari-Culik" type (and probably finite)
- 14 not "Kari-Culik"
- 1 strange (interesting) candidate:

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 From \mathcal{T}_n , \mathcal{T}_{n+1} , \mathcal{T}_{n+2} to \mathcal{T}_{n+1} , \mathcal{T}_{n+2} , \mathcal{T}_{n+3}

E. Jeandel, M. Rao An aperiodic set of 11 Wang tiles

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 From \mathcal{T}_n , \mathcal{T}_{n+1} , \mathcal{T}_{n+2} to \mathcal{T}_{n+1} , \mathcal{T}_{n+2} , \mathcal{T}_{n+3}

イロン イロン イヨン イヨン

From \mathcal{T} to \mathcal{T}_D From \mathcal{T}_D to T_0 , T_1 , T_2 From T_n , T_{n+1} , T_{n+2} to T_{n+1} , T_{n+2} , T_{n+3}

< ロ > < 同 > < 三 >

Open question 2 : "proof from the book" ?

If we look at densities of 1 on each line on an infinite tiling, one transducer add $\varphi - 1$ and the other add $\varphi - 2$.

 \rightarrow "additive" Kari-Culik ?

