Deviations of ergodic averages for systems coming from self-affine point sets

Rodrigo Treviño

joint work with S. Schmieding

$\Lambda \subset \mathbb{R}^d$

Delone set

(Relatively dense, uniformly discrete)

A cluster or patch is a finite subset of Λ

 Λ is **repetitive** if for every r > 0 there is a R > 0 such that any cluster in some B_r appears in every B_R

 Λ has **finite local complexity** (**FLC**) if for every R > 0 there is a finite set L_R such that any cluster in any B_R is found in L_R . Or: **FLC** iff $\Lambda - \Lambda$ is discrete and closed.

$$\varphi_t(\Lambda) = \Lambda + t \leftarrow \text{translation of } \Lambda \text{ by } t \in \mathbb{R}^d$$

$$d(\Lambda, \Lambda') = \text{(assume } \varphi_t(\Lambda) = \Lambda \text{ implies } t = \overline{0}\text{)}$$

$$\inf\{\varepsilon > 0 : B_{\varepsilon^{-1}} \cap \varphi_x(\Lambda) = B_{\varepsilon^{-1}} \cap \varphi_y(\Lambda')\}$$

$$x, y \in B_{\varepsilon}$$

$$\Omega_{\Lambda} = \overline{\{\varphi_t(\Lambda), t \in \mathbb{R}^d\}} \leftarrow ext{pattern space of } \Lambda$$

Not a manifold.

Local product structure: $V \times C$

 ${\mathcal C}$ totally disconnected set (usually Cantor)

$$\varphi_t:\Omega_\Lambda o \Omega_\Lambda \quad ext{Minimal, uniquely ergodic}$$
Repetitivity Uniform cluster frequency

There exists a measure μ such that for any $f \in C(\Omega_{\Lambda})$

$$\frac{1}{\operatorname{Vol}(B_T)} \int_{B_T} f \circ \varphi_t(\Lambda_0) dt \longrightarrow \int_{\Omega_{\Lambda}} f d\mu$$

What can we say about this convergence?

How does this grow as T gets larger?

$$\left| \int_{B_T} f \circ \varphi_t(\Lambda_0) \, dt \right|$$

Motivation: Diffraction

 $\phi: \mathbb{R}^d \to \mathbb{R}$ smooth bump function

$$\rho := \phi * \sum_{x \in \Lambda} \delta_x$$

 $\exists h \in C(\Omega_{\Lambda}) \text{ such that } \rho(t) = \varphi_t^* h(\Lambda)$

Dworkin's argument

$$\gamma(x) = \lim_{T \to \infty} \frac{1}{\text{Vol}(B_T)} \int_{B_t} \rho(x+t)\rho(t) dt$$

(Autocorrelation)

$$= \lim_{T \to \infty} \frac{1}{\operatorname{Vol}(B_t)} \int_{B_T} \varphi_t^* [\varphi_x^* h \cdot h](\Lambda) dt$$

$$= \int_{\Omega_{\Lambda}} \varphi_x^* h \cdot h \, d\mu = (\varphi_x^* h, h)$$

$$\hat{\gamma} = \widehat{(\varphi_x^* h, h)} \quad \text{ Diffraction measure}$$

The diffraction measure is a spectral measure and is defined by an ergodic theorem

Cohomology for pattern spaces (following J. Kellendonk)

 $f: \mathbb{R}^d \to \mathbb{R}$ is Λ -equivariant if $\exists R > 0$ s.t.

$$\varphi_x(\Lambda) \cap B_R = \varphi_y(\Lambda) \cap B_R \text{ implies } f(x) = f(y)$$

If f is Λ -equiv. there exists an $h_f \in C(\Omega_{\Lambda})$ such that $f(t) = \varphi_t^* h_f(\Lambda)$

 Λ equivariant forms are maps $\eta: \mathbb{R}^d \to \Lambda \mathbb{R}^d$ which are Λ -equivariant. Denote by Δ_{Λ}^k the set of C^{∞} Λ -equiv. k-forms.

The complex $0 \to \Delta_{\Lambda}^0 \xrightarrow{d} \Delta_{\Lambda}^1 \xrightarrow{d} \cdots \xrightarrow{d} \Delta_{\Lambda}^d$ is a subcomplex of the de Rham complex.

The Λ -equivariant cohomology spaces are

$$H^{k}(\Omega_{\Lambda}) = \frac{\ker\{d : \Delta_{\Lambda}^{k} \to \Delta_{\Lambda}^{k+1}\}}{\operatorname{Im}\{d : \Delta_{\Lambda}^{k-1} \to \Delta_{\Lambda}^{k}\}}$$

In many cases they are finite dimensional:

- · Substitution tilings (Anderson-Putnam)
- · Certain cut-and-project constructions (Kellendonk, Gahler, Hunton, Forrest)

Λ is of type \mathbf{R} if

- There is a m.p.h. $\Phi_A:\Omega_\Lambda\to\Omega_\Lambda$ such that $\Phi_A\circ\varphi_t=\varphi_{At}\circ\Phi_A$ with $A\in GL^+\!(d,\mathbb{R})$ an expanding matrix Self-affine property

- $H^*(\Omega_{\Lambda})$ is finite dimensional.

This holds for substitution tilings and some cut-and-project sets.

If Λ is of type $\mathbf R$ there is an induced map

$$\Phi_A^*: H^d(\Omega_\Lambda) \to H^d(\Omega_\Lambda)$$

with eigenvalues $\nu_1 \geq \cdots \geq \nu_r$.

Denote by $\lambda_1 \geq \cdots \geq \lambda_d > 1$ the eigenvalues of A

The rapidly expanding subspace $E^+ \subset H^d(\Omega_{\Lambda})$ is the span of all gen. eigenvectors with eigenvalues $|\nu_i|$ satisfying

$$\frac{\log |\nu_i|}{\log |\nu_1|} \ge 1 - \frac{\log \lambda_d}{\log |\nu_1|}$$

When A is pure dilation this becomes $\frac{\log |\nu_i|}{\log |\nu_1|} \ge \frac{d-1}{d}$.

 $C^{\infty}_{tlc}(\Omega_{\Lambda})$ are the transversally locally constant functions: $h \in C^{\infty}_{tlc}(\Omega_{\Lambda})$ iff $\exists \rho \in \Delta^{0}_{\Lambda}$ such that $\rho(t) = \varphi_{t}^{*}h(\Lambda)$

For a "nice" set B_0 , let $B_T = \exp(a \frac{d \log T}{\det(A)}) B_0$ where $a \in \mathfrak{sl}(d, \mathbb{R})$ satisfies $\exp(a) = A$ As such: $\operatorname{Vol}(B_T) = \operatorname{Vol}(B_0) \cdot T^d$

Theorem (Schmieding-T): There is a ρ -dimensional space of closed, \mathbb{R}^d -invariant distributions $\mathcal{D}_1, \ldots, \mathcal{D}_{\rho}$ such that for any Lipschitz domain B_0 , if $f \in C_{tlc}^{\infty}(\Omega_{\Lambda})$ with $\mathcal{D}_i(f) = 0$ for all i < j but $\mathcal{D}_j(f) \neq 0$, then if $\nu_j > \frac{\nu_1}{\lambda_d}$,

$$\left| \int_{B_T} f \circ \varphi_t(\Lambda_0) \, dt \right| \le K T^{d \frac{\log |\nu_j|}{\log |\nu_1|}} ||f||_{\infty}$$

if $\nu_j = \frac{\nu_1}{\lambda_d}$,

$$\left| \int_{B_{T}}^{\infty} f \circ \varphi_t(\Lambda_0) dt \right| \leq K(\log T) T^{d \frac{\log |\nu_j|}{\log \nu_1}} ||f||_{\infty}$$

if $\mathcal{D}_i(f) = 0$ for all i, then

$$\left| \int_{B_{T}} f \circ \varphi_{t}(\Lambda_{0}) dt \right| \leq KT^{d\left(1 - \frac{\log \lambda_{d}}{\log \nu_{1}}\right)} ||f||_{\infty} = \mathcal{O}(|\partial B_{T}|)$$

- First results using cohomology by L. Sadun
- Similar results by Bufetov-Solomyak (Self-Similar Tilings)
- Applications: diffraction, counting problems
 Solid-state models, spectral theory of Schrodinger Op's
- Inspired by the Zorich-Forni phenomena for translation flows

- $\star \mathfrak{D}_i = \mathfrak{C}_i \in (\Delta_{\Lambda}^d)'$ is a closed, invariant current.
- \mathfrak{C}_1 is the asymptotic cycle