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Real spectrum
Study of properties of the set
X™(B) = {Zn:a,-ﬁi laje A}, A={0,1,...,m}CN
i=0
was initiated by Erdds, Joé and Komornik in 1990

Main questions: For which 8 and m is X™(3) uniformly discrete or

relatively dense in R™?

De-Jun Feng (2015): X“(3) is not uniformly discrete if and only if

8 < m+1and (is not a Pisot number.
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Moving to complex plane

Pisot number: An algebraic integer > 1 whose conjugates satisfy

18] <1
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Moving to complex plane

Pisot number: An algebraic integer > 1 whose conjugates satisfy

18] <1

Pisot-cyclotomic number with symmetry of order n: A Pisot

number [ that satisfies Z[5] = Z[2 cos(%ﬂ)]

Note: If w is corresponding n-th primitive root of unity, then

Z[w] = Z[B] + Z[Blw

From now on we will assume that A = {w"} U {0}
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order name approximate value minimal polynomial
50r10 T 1.618033989 2 —x—1

72 2.618033989 X% —3x+1
Torld A 2.246979604 B2 —x+1

4.048917340
5.048917340
20.44264896
21.44264896

8 8 2.414213562
3.414213562
9or18 K 2.879385242

7.290859369
8.290859369
12 m 2.732050808
3.732050808

x3—3x% —4x—1
3 —6x®+5x—1

x3—20x2 —ox —1
x3 —23x% 4 34x — 13
X2 —2x—1
x274x+2
X3—3X2+1

x> —6x2 —9x—3
X3 —ox? +6x—1
x° —=2x —2

X2 —4x+1

Table: Pisot cyclotomic numbers of degree 2 and 3
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Interesting properties

We would like to know about

» Relative density: 3R s.t. each ball of certain diameter R

contains a point of X“(3)
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Interesting properties

We would like to know about

» Relative density: 3R s.t. each ball of certain diameter R

contains a point of X“(3)

» Uniform discreteness: Distances between points are bounded

from below (by a positive constant of course)
» Finite local complexity: Finite number of local configurations
» Properties of Voronoi tiling

» (C&P model)
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Uniform discreteness

Theorem
Let 5 be Pisot-cyclotomic of order n and let B C Q(w). Then

XB(B) is uniformly discrete.
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Uniform discreteness

Theorem
Let 5 be Pisot-cyclotomic of order n and let B C Q(w). Then

XB(B) is uniformly discrete.

Proof.
We have Q(w) ={a+ b5 | a,bc Q(B)}

XB(B) € XBr(B) + wXB2(B) with B C Q(B).

Here X512(3) are uniformly discrete sets. O
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Relative density |l

Theorem

If # A < 32, then X(B) is not relatively dense.
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Relative density |l

Theorem

If # A < 32, then X(B) is not relatively dense.

Theorem

XA(B) is relatively dense if and only if O is in the interior of the set

+oo
K(B,A):={>_aiB" | a € A}.
i=0
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Relative density |l

Theorem

If # A < 32, then X(B) is not relatively dense.

Theorem

XA(B) is relatively dense if and only if O is in the interior of the set

+oo
K(B,A):={>_aiB" | a € A}.
i=0
Note that K(f,.A) is the unique compact set satisfying

KB A) =B 'K+a
acA
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order name

minimal polynomial

5 T
10 T

2
7 A
14 A
8 0
9 K
18 K
12 W

x2—x—1
x2—x—1
x> —3x+1

X3 —2x2 —x+1

x3—2x2 —x+1

x?—2x—1
x3—3x2+1
x3—3x2+1
X2 —2x —2

Relatively dense
Relatively dense
Relatively dense
Relatively dense
Relatively dense
Relatively dense
Not relatively dense
Relatively dense

Relatively dense

Table: Pisot cyclotomic numbers & relative density

Oléron 2016



How can we tell from the picture that 0 is or is not in the interior?
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How can we tell from the picture that 0 is or is not in the interior?

Theorem

Let XA(B) (B and A arbitrary) be a discrete set. Then the

following statements are equivalent:
1. XA(B) is relatively dense
2. 0 € int(K(B,.A))

3. Every z € C has a representation of the form

z= Z,{V:_oo a3’ with aj € A
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How can we tell from the picture that 0 is or is not in the interior?

Theorem
Let XA(B) (B and A arbitrary) be a discrete set. Then the

following statements are equivalent:
1. XA(B) is relatively dense
2. 0 € int(K(5,.A))
3. Every z € C has a representation of the form

z= ZN a3’ with aj € A

i=—o00

Result of Y. Herreros, 1991: Classification of our (3, .A) according

to property 3



Voronoi tiling

A Voronoi tile V(x) are complex numbers that are closer to x than

to any other point in X“(53)
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Voronoi tiling

A Voronoi tile V(x) are complex numbers that are closer to x than

to any other point in X“(53)

We can study
» number of tiles (up to symmetries)
» their radius (distance from the center to the farthest point)

» density of a particular tile
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It is easy to prove that X*(3) has FLC = finite number of tiles
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It is easy to prove that X*(3) has FLC = finite number of tiles

It is possible to compute the number of tiles

Symmetric 5  Lower Bound Upper Bound

5 T 12 12
10 T 5 5

10 ™ 5 11

7 A 201 24438
14 A 189 26594
8 5 5 7

18 k 154 2132
12 po 104 2792
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Counting the number of tiles

The shape of V/(x) is determined by points in X4(8) N B(x, %)
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Counting the number of tiles
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Counting the number of tiles

The shape of V(x) is determined by points in XA(B) N B(x, %)
The points in B(8x + a, 3= +2+) arise from the points of B(x, ﬁ)
Every x € X“(B) can be constructed from 0 by x — x + a

Compute points in the balls until you end up in cycles

Voila
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Thank you for your attention
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