Spectra of Pisot-cyclotomic numbers

Tomáš Vávra

K. Hare, Z. Masáková

Oléron 2016

June 7, 2016

Real spectrum

Study of properties of the set

$$X^m(\beta) = \{\sum_{i=0}^n a_i \beta^i \mid a_i \in \mathcal{A}\}, \quad \mathcal{A} = \{0, 1, \dots, m\} \subset \mathbb{N}$$

was initiated by Erdős, Joó and Komornik in 1990

Real spectrum

Study of properties of the set

$$X^m(eta) = \{\sum_{i=0}^n \mathsf{a}_i eta^i \mid \mathsf{a}_i \in \mathcal{A}\}, \quad \mathcal{A} = \{0, 1, \dots, m\} \subset \mathbb{N}$$

was initiated by Erdős, Joó and Komornik in 1990

Main questions: For which β and m is $X^m(\beta)$ uniformly discrete or relatively dense in \mathbb{R}^+ ?

Real spectrum

Study of properties of the set

$$X^m(eta) = \{\sum_{i=0}^n \mathsf{a}_i eta^i \mid \mathsf{a}_i \in \mathcal{A}\}, \quad \mathcal{A} = \{0, 1, \dots, m\} \subset \mathbb{N}$$

was initiated by Erdős, Joó and Komornik in 1990

Main questions: For which β and m is $X^m(\beta)$ uniformly discrete or relatively dense in \mathbb{R}^+ ?

De-Jun Feng (2015): $X^{\mathcal{A}}(\beta)$ is not uniformly discrete if and only if $\beta < m+1$ and β is not a Pisot number.

 $\underline{\textit{Pisot number}} \colon \textit{An algebraic integer} > 1 \ \textit{whose conjugates satisfy}$

 $|\beta'| < 1$

Pisot-cyclotomic number with symmetry of order n: A Pisot number β that satisfies $\mathbb{Z}[\beta] = \mathbb{Z}[2\cos(\frac{2\pi}{n})]$

 $\underline{\mbox{Pisot number}}.$ An algebraic integer >1 whose conjugates satisfy $|\beta'|<1$

Pisot-cyclotomic number with symmetry of order n: A Pisot number β that satisfies $\mathbb{Z}[\beta] = \mathbb{Z}[2\cos(\frac{2\pi}{n})]$

Note: If ω is corresponding *n*-th primitive root of unity, then

$$\mathbb{Z}[\omega] = \mathbb{Z}[\beta] + \mathbb{Z}[\beta]\omega$$

 $\underline{\mbox{Pisot number}}.$ An algebraic integer >1 whose conjugates satisfy $|\beta'|<1$

Pisot-cyclotomic number with symmetry of order n: A Pisot number β that satisfies $\mathbb{Z}[\beta] = \mathbb{Z}[2\cos(\frac{2\pi}{n})]$

Note: If ω is corresponding *n*-th primitive root of unity, then

$$\mathbb{Z}[\omega] = \mathbb{Z}[\beta] + \mathbb{Z}[\beta]\omega$$

From now on we will assume that $\mathcal{A} = \{\omega^n\} \cup \{0\}$

order	name	approximate value	minimal polynomial
5 or 10	τ	1.618033989	$x^2 - x - 1$
	$ au^2$	2.618033989	$x^2 - 3x + 1$
7 or 14	λ	2.246979604	$x^3 - 2x^2 - x + 1$
		4.048917340	$x^3 - 3x^2 - 4x - 1$
		5.048917340	$x^3 - 6x^2 + 5x - 1$
		20.44264896	$x^3 - 20x^2 - 9x - 1$
		21.44264896	$x^3 - 23x^2 + 34x - 13$
8	δ	2.414213562	$x^2 - 2x - 1$
		3.414213562	$x^2 - 4x + 2$
9 or 18	κ	2.879385242	$x^3 - 3x^2 + 1$
		7.290859369	$x^3 - 6x^2 - 9x - 3$
		8.290859369	$x^3 - 9x^2 + 6x - 1$
12	μ	2.732050808	$x^2 - 2x - 2$
		3.732050808	$x^2 - 4x + 1$

Table: Pisot cyclotomic numbers of degree 2 and 3

We would like to know about

▶ Relative density: $\exists R$ s.t. each ball of certain diameter R contains a point of $X^{A}(\beta)$

- ▶ Relative density: $\exists R$ s.t. each ball of certain diameter R contains a point of $X^{\mathcal{A}}(\beta)$
- Uniform discreteness: Distances between points are bounded from below

- Relative density: ∃R s.t. each ball of certain diameter R contains a point of X^A(β)
- Uniform discreteness: Distances between points are bounded from below (by a positive constant of course)

- Relative density: ∃R s.t. each ball of certain diameter R contains a point of X^A(β)
- Uniform discreteness: Distances between points are bounded from below (by a positive constant of course)
- Finite local complexity: Finite number of local configurations

- Relative density: ∃R s.t. each ball of certain diameter R contains a point of X^A(β)
- Uniform discreteness: Distances between points are bounded from below (by a positive constant of course)
- ► Finite local complexity: Finite number of local configurations
- Properties of Voronoi tiling

- Relative density: ∃R s.t. each ball of certain diameter R contains a point of X^A(β)
- Uniform discreteness: Distances between points are bounded from below (by a positive constant of course)
- ► Finite local complexity: Finite number of local configurations
- Properties of Voronoi tiling
- ► (C&P model)

Uniform discreteness

Theorem

Let β be Pisot-cyclotomic of order n and let $\mathcal{B} \subset \mathbb{Q}(\omega)$. Then $X^{\mathcal{B}}(\beta)$ is uniformly discrete.

Uniform discreteness

Theorem

Let β be Pisot-cyclotomic of order n and let $\mathcal{B} \subset \mathbb{Q}(\omega)$. Then $X^{\mathcal{B}}(\beta)$ is uniformly discrete.

Proof.

We have
$$\mathbb{Q}(\omega) = \{a + b\beta \mid a, b \in \mathbb{Q}(\beta)\}$$

$$X^{\mathcal{B}}(\beta) \subset X^{\mathcal{B}_1}(\beta) + \omega X^{\mathcal{B}_2}(\beta)$$
 with $\mathcal{B}_{1,2} \subset \mathbb{Q}(\beta)$.

Here $X^{\mathcal{B}_{1,2}}(\beta)$ are uniformly discrete sets.

Relative density II

Theorem

If $\#A < \beta^2$, then $X^A(\beta)$ is not relatively dense.

Relative density II

Theorem

If $\#A < \beta^2$, then $X^A(\beta)$ is not relatively dense.

Theorem

 $X^{\mathcal{A}}(\beta)$ is relatively dense if and only if 0 is in the interior of the set

$$K(\beta,\mathcal{A}) := \{ \sum_{i=0}^{+\infty} a_i \beta^{-i} \mid a_i \in \mathcal{A} \}.$$

Relative density II

Theorem

If $\#A < \beta^2$, then $X^A(\beta)$ is not relatively dense.

Theorem

 $X^{\mathcal{A}}(\beta)$ is relatively dense if and only if 0 is in the interior of the set

$$\mathcal{K}(\beta,\mathcal{A}) := \{ \sum_{i=0}^{+\infty} a_i \beta^{-i} \mid a_i \in \mathcal{A} \}.$$

Note that $K(\beta, A)$ is the unique compact set satisfying

$$K(\beta, A) = \bigcup_{a \in A} \beta^{-1}K + a$$

order	name	minimal polynomial	
5	au	$x^2 - x - 1$	Relatively dense
10	au	$x^2 - x - 1$	Relatively dense
	$ au^2$	$x^2 - 3x + 1$	Relatively dense
7	λ	$x^3 - 2x^2 - x + 1$	Relatively dense
14	λ	$x^3 - 2x^2 - x + 1$	Relatively dense
8	δ	$x^2 - 2x - 1$	Relatively dense
9	κ	$x^3 - 3x^2 + 1$	Not relatively dense
18	κ	$x^3 - 3x^2 + 1$	Relatively dense
12	μ	$x^2 - 2x - 2$	Relatively dense

Table: Pisot cyclotomic numbers & relative density

How can we tell from the picture that 0 is or is not in the interior?

How can we tell from the picture that 0 is or is not in the interior?

Theorem

Let $X^{\mathcal{A}}(\beta)$ (β and \mathcal{A} arbitrary) be a discrete set. Then the following statements are equivalent:

- 1. $X^{\mathcal{A}}(\beta)$ is relatively dense
- 2. $0 \in \operatorname{int}(K(\beta, A))$
- 3. Every $z \in \mathbb{C}$ has a representation of the form $z = \sum_{i=-\infty}^{N} a_i \beta^i$ with $a_i \in \mathcal{A}$

How can we tell from the picture that 0 is or is not in the interior?

Theorem

Let $X^{\mathcal{A}}(\beta)$ (β and \mathcal{A} arbitrary) be a discrete set. Then the following statements are equivalent:

- 1. $X^{\mathcal{A}}(\beta)$ is relatively dense
- 2. $0 \in \operatorname{int}(K(\beta, A))$
- 3. Every $z \in \mathbb{C}$ has a representation of the form $z = \sum_{i=-\infty}^{N} a_i \beta^i$ with $a_i \in \mathcal{A}$

Result of Y. Herreros, 1991: Classification of our (β, A) according to property 3

A Voronoi tile V(x) are complex numbers that are closer to x than to any other point in $X^{\mathcal{A}}(\beta)$

A Voronoi tile V(x) are complex numbers that are closer to x than to any other point in $X^{\mathcal{A}}(\beta)$

We can study

number of tiles (up to symmetries)

A Voronoi tile V(x) are complex numbers that are closer to x than to any other point in $X^{\mathcal{A}}(\beta)$

We can study

- number of tiles (up to symmetries)
- their radius (distance from the center to the farthest point)

A Voronoi tile V(x) are complex numbers that are closer to x than to any other point in $X^{\mathcal{A}}(\beta)$

We can study

- number of tiles (up to symmetries)
- their radius (distance from the center to the farthest point)
- density of a particular tile

It is easy to prove that $X^{\mathcal{A}}(\beta)$ has FLC \implies finite number of tiles

It is easy to prove that $X^{\mathcal{A}}(\beta)$ has FLC \implies finite number of tiles

It is possible to compute the number of tiles

Symmetric	β	Lower Bound	Upper Bound
5	au	12	12
10	au	5	5
10	$ au^2$	5	11
7	λ	201	2 ⁴⁴³⁸
14	λ	189	2 ⁶⁵⁹⁴
8	δ	5	7
18	κ	154	2^{132}
12	μ	104	2 ⁷⁹²

The shape of V(x) is determined by points in $X^{\mathcal{A}}(\beta) \cap B(x, \frac{2}{\beta-1})$

The shape of V(x) is determined by points in $X^{\mathcal{A}}(\beta) \cap B(x, \frac{2}{\beta-1})$

The points in $B(\beta x + a, \frac{2}{\beta - 1})$ arise from the points of $B(x, \frac{2}{\beta - 1})$

The shape of V(x) is determined by points in $X^{\mathcal{A}}(\beta) \cap B(x, \frac{2}{\beta-1})$

The points in $B(\beta x + a, \frac{2}{\beta - 1})$ arise from the points of $B(x, \frac{2}{\beta - 1})$

Every $x \in X^{\mathcal{A}}(\beta)$ can be constructed from 0 by $x \mapsto \beta x + a$

The shape of V(x) is determined by points in $X^{\mathcal{A}}(\beta) \cap B(x, \frac{2}{\beta-1})$

The points in $B(\beta x + a, \frac{2}{\beta - 1})$ arise from the points of $B(x, \frac{2}{\beta - 1})$

Every $x \in X^{\mathcal{A}}(\beta)$ can be constructed from 0 by $x \mapsto \beta x + a$

Compute points in the balls until you end up in cycles

The shape of V(x) is determined by points in $X^{\mathcal{A}}(\beta) \cap B(x, \frac{2}{\beta-1})$

The points in $B(\beta x + a, \frac{2}{\beta - 1})$ arise from the points of $B(x, \frac{2}{\beta - 1})$

Every $x \in X^{\mathcal{A}}(\beta)$ can be constructed from 0 by $x \mapsto \beta x + a$

Compute points in the balls until you end up in cycles

Voilà

Thank you for your attention