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Real spectrum

Study of properties of the set

Xm(β) = {
n∑

i=0

aiβ
i | ai ∈ A}, A = {0, 1, . . . ,m} ⊂ N

was initiated by Erdős, Joó and Komornik in 1990

Main questions: For which β and m is Xm(β) uniformly discrete or

relatively dense in R+?

De-Jun Feng (2015): XA(β) is not uniformly discrete if and only if

β < m + 1 and β is not a Pisot number.
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Moving to complex plane

Pisot number: An algebraic integer > 1 whose conjugates satisfy

|β′| < 1

Pisot-cyclotomic number with symmetry of order n: A Pisot

number β that satisfies Z[β] = Z[2 cos(2πn )]

Note: If ω is corresponding n-th primitive root of unity, then

Z[ω] = Z[β] + Z[β]ω

From now on we will assume that A = {ωn} ∪ {0}
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order name approximate value minimal polynomial

5 or 10 τ 1.618033989 x2 − x − 1

τ2 2.618033989 x2 − 3x + 1

7 or 14 λ 2.246979604 x3 − 2x2 − x + 1

4.048917340 x3 − 3x2 − 4x − 1

5.048917340 x3 − 6x2 + 5x − 1

20.44264896 x3 − 20x2 − 9x − 1

21.44264896 x3 − 23x2 + 34x − 13

8 δ 2.414213562 x2 − 2x − 1

3.414213562 x2 − 4x + 2

9 or 18 κ 2.879385242 x3 − 3x2 + 1

7.290859369 x3 − 6x2 − 9x − 3

8.290859369 x3 − 9x2 + 6x − 1

12 µ 2.732050808 x2 − 2x − 2

3.732050808 x2 − 4x + 1

Table: Pisot cyclotomic numbers of degree 2 and 3
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Interesting properties

We would like to know about

I Relative density: ∃R s.t. each ball of certain diameter R

contains a point of XA(β)

I Uniform discreteness: Distances between points are bounded

from below (by a positive constant of course)

I Finite local complexity: Finite number of local configurations

I Properties of Voronoi tiling

I (C&P model)

Oléron 2016



Interesting properties

We would like to know about

I Relative density: ∃R s.t. each ball of certain diameter R

contains a point of XA(β)

I Uniform discreteness: Distances between points are bounded

from below

(by a positive constant of course)

I Finite local complexity: Finite number of local configurations

I Properties of Voronoi tiling

I (C&P model)

Oléron 2016



Interesting properties

We would like to know about

I Relative density: ∃R s.t. each ball of certain diameter R

contains a point of XA(β)

I Uniform discreteness: Distances between points are bounded

from below (by a positive constant of course)

I Finite local complexity: Finite number of local configurations

I Properties of Voronoi tiling

I (C&P model)

Oléron 2016



Interesting properties

We would like to know about

I Relative density: ∃R s.t. each ball of certain diameter R

contains a point of XA(β)

I Uniform discreteness: Distances between points are bounded

from below (by a positive constant of course)

I Finite local complexity: Finite number of local configurations

I Properties of Voronoi tiling

I (C&P model)

Oléron 2016



Interesting properties

We would like to know about

I Relative density: ∃R s.t. each ball of certain diameter R

contains a point of XA(β)

I Uniform discreteness: Distances between points are bounded

from below (by a positive constant of course)

I Finite local complexity: Finite number of local configurations

I Properties of Voronoi tiling

I (C&P model)

Oléron 2016



Interesting properties

We would like to know about

I Relative density: ∃R s.t. each ball of certain diameter R

contains a point of XA(β)

I Uniform discreteness: Distances between points are bounded

from below (by a positive constant of course)

I Finite local complexity: Finite number of local configurations

I Properties of Voronoi tiling

I (C&P model)

Oléron 2016



Uniform discreteness

Theorem

Let β be Pisot-cyclotomic of order n and let B ⊂ Q(ω). Then

XB(β) is uniformly discrete.

Proof.

We have Q(ω) = {a+ bβ | a, b ∈ Q(β)}

XB(β) ⊂ XB1(β) + ωXB2(β) with B1,2 ⊂ Q(β).

Here XB1,2(β) are uniformly discrete sets.
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Relative density II

Theorem

If #A < β2, then XA(β) is not relatively dense.

Theorem

XA(β) is relatively dense if and only if 0 is in the interior of the set

K (β,A) := {
+∞∑
i=0

aiβ
−i | ai ∈ A}.

Note that K (β,A) is the unique compact set satisfying

K (β,A) =
⋃
a∈A

β−1K + a
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order name minimal polynomial

5 τ x2 − x − 1 Relatively dense

10 τ x2 − x − 1 Relatively dense

τ2 x2 − 3x + 1 Relatively dense

7 λ x3 − 2x2 − x + 1 Relatively dense

14 λ x3 − 2x2 − x + 1 Relatively dense

8 δ x2 − 2x − 1 Relatively dense

9 κ x3 − 3x2 + 1 Not relatively dense

18 κ x3 − 3x2 + 1 Relatively dense

12 µ x2 − 2x − 2 Relatively dense

Table: Pisot cyclotomic numbers & relative density
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How can we tell from the picture that 0 is or is not in the interior?

Theorem

Let XA(β) (β and A arbitrary) be a discrete set. Then the

following statements are equivalent:

1. XA(β) is relatively dense

2. 0 ∈ int(K (β,A))

3. Every z ∈ C has a representation of the form

z =
∑N

i=−∞ aiβ
i with ai ∈ A

Result of Y. Herreros, 1991: Classification of our (β,A) according

to property 3
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Voronoi tiling

A Voronoi tile V (x) are complex numbers that are closer to x than

to any other point in XA(β)

We can study

I number of tiles (up to symmetries)

I their radius (distance from the center to the farthest point)

I density of a particular tile

Oléron 2016



Voronoi tiling

A Voronoi tile V (x) are complex numbers that are closer to x than

to any other point in XA(β)

We can study

I number of tiles (up to symmetries)

I their radius (distance from the center to the farthest point)

I density of a particular tile

Oléron 2016



Voronoi tiling

A Voronoi tile V (x) are complex numbers that are closer to x than

to any other point in XA(β)

We can study

I number of tiles (up to symmetries)

I their radius (distance from the center to the farthest point)

I density of a particular tile

Oléron 2016



Voronoi tiling

A Voronoi tile V (x) are complex numbers that are closer to x than

to any other point in XA(β)

We can study

I number of tiles (up to symmetries)

I their radius (distance from the center to the farthest point)

I density of a particular tile

Oléron 2016



Oléron 2016



Oléron 2016



Oléron 2016



Oléron 2016



Oléron 2016



It is easy to prove that XA(β) has FLC =⇒ finite number of tiles

It is possible to compute the number of tiles

Symmetric β Lower Bound Upper Bound

5 τ 12 12

10 τ 5 5

10 τ2 5 11

7 λ 201 24438

14 λ 189 26594

8 δ 5 7

18 κ 154 2132

12 µ 104 2792

Table: Pisot cyclotomic numbers & the number of tiles
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Counting the number of tiles

The shape of V (x) is determined by points in XA(β) ∩ B(x , 2
β−1)

The points in B(βx + a, 2
β−1) arise from the points of B(x , 2

β−1)

Every x ∈ XA(β) can be constructed from 0 by x 7→ βx + a

Compute points in the balls until you end up in cycles

Voilà
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Thank you for your attention
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